Skip to main content
Log in

Switchable circular polarization in flower-shaped reconfigurable graphene-based THz microstrip patch antenna

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In the proposed article, the design of a flower-shaped reconfigurable graphene-based THz microstrip patch antenna is presented. The cross-shaped slot in the center of the antenna promises the realization of circular polarization. The configuration of the structure is considered in such a way that each component of the body has the ability to realize a different behavior for the far-field due to the changes in the chemical potential values and in fact the Fermi energy. In fact, an antenna with the ability to switch between right-handed circular polarization and left-handed circular polarization has been proposed in the THz frequency band. According to the design, the resonance frequency is located at 0.77 THz. The main purpose is polarization adjusting through chemical potential changes. At the same time, the physical structure of the antenna remains fixed and intact. Next, an antenna with a suitable matching range of 0.6 THz through 0.95 THz has been achieved. It is possible to control its polarization in two circular polarization modes, right-handed and left-handed. Suitable axial ratio is about 3 dB, which is obtained in the range of 0.62 THz through 0.64 THz. The addition of layered patches has enabled polarization switching. The output of S11 is less than − 10 dB in the range of 0.6 THz through 0.95 THz. which represents the optimal matching. And, the outputs of radiation efficiency, far-field directivity radiation pattern, 2D and 3D radiation patterns, E-field distribution, surface current distribution H-field distribution, and current density distribution have been reflected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

My submission has no associated data and code. All data generated or analyzed during this study are included in this published article.

References

  1. Varshney, G., Verma, A., Pandey, V. S., Yaduvanshi, R. S., & Bala, R. (2018). A proximity coupleld wideband graphene antenna with the generation of higher order TM modes for THz application. Optical Materials, 85, 456–463. https://doi.org/10.1016/j.optmat.2018.09.015

    Article  ADS  CAS  Google Scholar 

  2. Varshney, G., Gotra, S., Pandey, V. S., & Yaduvanshi, R. S. (2019). Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Communication Networks, 21, 100246. https://doi.org/10.1016/j.nancom.2019.05.003

    Article  Google Scholar 

  3. Varshney, G., Gotra, S., Pandey, V. S., & Yaduvanshi, R. S. (2019). Proximity-coupled graphene-patch-based tunable single-/dual-band notch filter for THz applications. Journal of Electronic Materials, 48(8), 4818–4829. https://doi.org/10.1007/s11664-019-07274-8

    Article  ADS  CAS  Google Scholar 

  4. Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2019). Reconfigurable graphene-based V-shaped dipole antenna: from quasi-isotropic to directional radiation pattern. Opt. Int. J. Light Electron. Opt., 184, 421–427. https://doi.org/10.1016/j.ijleo.2019.04.125

    Article  CAS  Google Scholar 

  5. Varshney, G. (2020). Reconfigurable graphene antenna for THz applications: A mode conversion approach. Nanotechnology, 31, 135208. https://doi.org/10.1088/1361-6528/ab60cc

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Varshney, G., Debnath, S., & Sharma, A. K. (2020). Tunable circularly polarized graphene antenna for THz applications. Opt. Int. J. Light Electron. Opt., 223, 165412. https://doi.org/10.1016/j.ijleo.2020.165412

    Article  CAS  Google Scholar 

  7. Sharma, T., Varshney, G., Yaduvanshi, R. S., & Vashishath, M. (2020). Obtaining the tunable band-notch in ultrawideband THz antenna using graphene nanoribbons. Opt. Engin., 59(4), 047103. https://doi.org/10.1117/1.OE.59.4.047103

    Article  ADS  CAS  Google Scholar 

  8. Kiani, N., Tavakol, H. F., Rezaei, P., Jafari, C. M., & Danaie, M. (2020). Polarization controlling approach in reconfigurable microstrip graphene-based antenna. Opt. Int. J. Light Electron. Opt., 203, 163942. https://doi.org/10.1016/j.ijleo.2019.163942

    Article  CAS  Google Scholar 

  9. Jafari, C. M., Rezaei, P., & Kiani, N. (2020). Polarization controlling of multi resonant graphene-based microstrip antenna. Plasmonics, 15(2), 417–426. https://doi.org/10.1007/s11468-019-01044-2

    Article  CAS  Google Scholar 

  10. Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2020). Y-shaped graphene-based antenna with switchable circular polarization. Opt. Int. J. Light Electron. Opt., 200, 163321. https://doi.org/10.1016/j.ijleo.2019.163321

    Article  CAS  Google Scholar 

  11. Kiani, N., Tavakol, H. F., & Rezaei, P. (2021). Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna. Opt. Int. J. Light Electron. Opt., 244, 167595. https://doi.org/10.1016/j.ijleo.2021.167595

    Article  CAS  Google Scholar 

  12. Varshney, G. (2021). Tunable terahertz dielectric resonator antenna. SILICON, 13, 1907–1915. https://doi.org/10.1007/s12633-020-00577-0

    Article  CAS  Google Scholar 

  13. Kiani, N., Tavakol, H. F., & Rezaei, P. (2021). Polarization controlling method in reconfigurable graphene-based patch four-leaf clover-shaped antenna. Opt. Int. J. Light Electron. Opt., 231, 166454. https://doi.org/10.1016/j.ijleo.2021.166454

    Article  CAS  Google Scholar 

  14. Ali, M. F., Bhattacharya, R., & Varshney, G. (2021). Graphene-based tunable terahertz self-diplexing/MIMO-STAR antenna with pattern diversity. Nano Communication Networks, 30, 100378. https://doi.org/10.1016/j.nancom.2021.100378

    Article  Google Scholar 

  15. Da, P., & Varshney, G. (2021). Analysis of tunable THz antennas integrated with polarization insensitive frequency selective surfaces. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-021-03320-0

    Article  Google Scholar 

  16. Kiani, N., Tavakol, H. F., & Rezaei, P. (2021). Polarization controlling idea in graphene-based patch antenna. Opt. Int. J. Light Electron. Opt., 239, 166795. https://doi.org/10.1016/j.ijleo.2021.166795

    Article  CAS  Google Scholar 

  17. Vishwanath, G., Sahana, B. C., & Varshney, G. (2022). Tunable terahertz dual-band circularly polarized dielectric resonator antenna. Opt. Int. J. Light Electron. Opt., 253, 168578. https://doi.org/10.1016/j.ijleo.2022.168578

    Article  Google Scholar 

  18. Ibrahim, A. A., Zahra, H., Abbas, S. M., Ahmed, M. I., Varshney, G., Mukhopadhyay, S., & Mahmoud, A. (2022). Compact four-port circularly polarized MIMO X-band DRA. Sensors, 22(12), 4461. https://doi.org/10.3390/s22124461

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Kiani, N., Tavakol, H. F., & Rezaei, P. (2022). Realization of polarization adjusting in reconfigurable graphene-based microstrip antenna by adding leaf-shaped patch. Micr. Na., 168, 207322. https://doi.org/10.1016/j.micrna.2022.207322

    Article  CAS  Google Scholar 

  20. Kumar, D., Kumar, V., Subhash, Y. A., Giri, P., & Varshney, G. (2022). Tuning the higher to lower order resonance frequency ratio and implementing the tunable THz MIMO/self-diplexing antenna. Nano Communication Networks, 34, 100419. https://doi.org/10.1016/j.nancom.2022.100419

    Article  Google Scholar 

  21. Kumar, D., Kumar, K. S., Giri, P., & Varshney, G. (2022). Terahertz ultra-wideband antenna with tunable band-notch creation using resonant/non-resonant graphene loop. Optical Engineering, 61(10), 107106. https://doi.org/10.1117/1.OE.61.10.107106

    Article  ADS  CAS  Google Scholar 

  22. Kiani, N., Tavakol, H. F., & Rezaei, P. (2022). Implementation of a reconfigurable miniaturized graphene-based SIW antenna for THz applications. Micro and Nanostructures, 169, 207365. https://doi.org/10.1016/j.micrna.2022.207365

    Article  CAS  Google Scholar 

  23. Vasu, B. K., Das, S., Varshney, G., Sree, G. N. J., & Madhav, B. D. P. (2022). A micro-scaled graphene-based tree-shaped wideband printed MIMO antenna for terahertz applications. Journal of Computational Electronics, 21, 289–303. https://doi.org/10.1007/s10825-021-01831-3

    Article  Google Scholar 

  24. Ali, M. F., Bhattacharya, R., & Varshney, G. (2022). Tunable four-port MIMO/self-multiplexing THz graphene patch antenna with high isolation. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-022-04200-x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumar, D., Sharma, A., Arora, A., Giri, P., & Varshney, G. (2022). Terahertz antenna with tunable filtering characteristics. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-022-04281

    Article  PubMed  PubMed Central  Google Scholar 

  26. Da, P., & Varshney, G. (2022). Gain enhancement of dual-band terahertz antenna using reflection-based frequency selective surfaces. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-022-03548-4

    Article  Google Scholar 

  27. Sharma, T., Varshney, G., Yaduvanshi, R. S., & Vashishath, M. (2022). Modified Koch borderline monopole antenna for THz regime. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-022-03687-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou, F., & Wen, H. (2021). Performance analysis and optimization of TM/TE independent graphene ring modulator. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-021-03080-x

    Article  Google Scholar 

  29. Moradiani, F., Seifouri, M., Abedi, K., & Geran, G. F. (2021). High extinction ratio all-optical modulator using a vanadium-dioxide integrated hybrid plasmonic waveguide. Plasmonics, 16, 189–198. https://doi.org/10.1007/s11468-020-01276-7

    Article  CAS  Google Scholar 

  30. Rezazadeh, A., & Soheilifar, M. R. (2021). THz absorber for breast cancer early detection based on graphene as multi-layer structure. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-021-03198-y

    Article  Google Scholar 

  31. Ahmad, H., & Thandavan, T. M. K. (2017). Characterization of graphene oxide/silicon dioxide/p-type silicon heterojunction photodetector towards infrared 974 nm illumination. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-017-1218-x

    Article  Google Scholar 

  32. Billaha, M. A., & Das, M. K. (2021). Transient response analysis of quantum well infrared photodetector. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-021-03113-5

    Article  Google Scholar 

  33. Yang, B., & Chen, J. (2021). The analysis of the capacitance of p-InAlAs/i-InGaAs/n-InAlAs infrared photodetector. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-021-02919-7

    Article  Google Scholar 

  34. Kiani, N., & Afsahi, M. (2019). Design and fabrication of a compact SIW diplexer in C-band. Iranian Journal of Electrical and Electronic Engineering (IEEE), 15(2), 189–194.

    Google Scholar 

  35. Alizadeh, S., Zareian-Jahromi, E., & Mashayekhi, V. (2022). A tunable graphene-based refractive index sensor for THz bio-sensing applications. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-021-03434-5

    Article  Google Scholar 

  36. Moradi, K., & Karimi, P. (2022). An enhanced gain of frequency and polarization reconfigurable graphene antenna in terahertz regime. AEU-International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2022.154463

    Article  Google Scholar 

  37. An, S., Xu, H., Zhang, Y., Wu, S., Jiang, J., He, Y., & Miao, L. (2017). Design of a polarization-insensitive wideband tunable metamaterial absorber based on split semi-circle ring resonators. Journal of Applied Physics. https://doi.org/10.1063/1.4993717

    Article  Google Scholar 

  38. Wu, S., Zhang, Y., Cui, X., Zhang, J., Xu, P., & Ji, X. (2023). Generation of dual-polarization orbital angular momentum vortex beams with reflection-type metasurface. Optics Communications. https://doi.org/10.1016/j.optcom.2023.130107

    Article  Google Scholar 

  39. Wu, S. (2022). Control of polarization orientation angle of scattered light based on metasurfaces:− 90° to+ 90° linear variation. Materials, 15(6), 2076. https://doi.org/10.3390/ma15062076

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, S. (2022). Design of metasurface-based polarization modulators by using Smith chart method. Optics Communication, 516, 128230. https://doi.org/10.1016/j.optcom.2022.128230

    Article  CAS  Google Scholar 

  41. Wu, S. (2022). Physical insight into the terahertz polarization modulator by using Smith chart. Physics Letters A, 440, 128143. https://doi.org/10.1016/j.physleta.2022.128143

    Article  CAS  Google Scholar 

  42. Computer Simulation Technology (CST), CST Microwave Studio Ver. 2015. www.cst.com

  43. Hanson, G. W. (2008). Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics, 103(6), 064302-1–064302-8. https://doi.org/10.1063/1.2891452

    Article  ADS  CAS  Google Scholar 

  44. Slepyan, G. Y., Maksimenko, S. A., Lakhtakia, A., Yevtushenko, O., & Gusakov, A. V. (1999). Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B, 60, 17136. https://doi.org/10.1103/PhysRevB.60.17136

    Article  ADS  CAS  Google Scholar 

  45. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200. https://doi.org/10.1038/nature04233

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Ryzhii, V., Satou, A., & Otsuji, T. (2007). Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. Journal of Applied Physics, 101(2), 4509. https://doi.org/10.1063/1.2426904

    Article  CAS  Google Scholar 

  47. Hanson, G. W. (2008). Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Transactions on Antennas and Propagation, 56(3), 747–757. https://doi.org/10.1109/TAP.2008.917005

    Article  ADS  Google Scholar 

  48. Falkovsky, L. A. (2007). Unusual field and temperature dependence of the Hall effect in graphene. Physical Review B, 75(3), 3409. https://doi.org/10.1103/PhysRevB.75.033409

    Article  ADS  CAS  Google Scholar 

  49. Gómez-Díaz, J. S., Esquius-Morote, M., & Perruisseau-Carrier, J. (2013). Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Optics Express, 21(21), 24856–24872. https://doi.org/10.1364/OE.21.024856

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Gusynin, V. P., Sharapov, S. G., & Charlotte, J. P. (2007). Magneto-optical conductivity in graphene. Journal of Physics Condensed Matter, 19(2), 026222. https://doi.org/10.1088/0953-8984/19/2/026222

    Article  ADS  CAS  Google Scholar 

  51. Wibbeler, J., Pfeifer, G., & Hietschold, M. (1998). Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sense. Actuators A Phys., 71(1–2), 74–80. https://doi.org/10.1016/S0924-4247(98)00155-1

    Article  CAS  Google Scholar 

  52. Thampy, A. S., Darak, M. S., & Dhamodharan, S. K. (2015). Analysis of graphene based optically transparent patch antenna for terahertz communications. Physica E: Low-dimensional Systems and Nanostructures, 66, 67–73. https://doi.org/10.1016/j.physe.2014.09.023

    Article  ADS  CAS  Google Scholar 

  53. Amn-e-Elahi, A., & Rezaei, P. (2020). SIW corporate-feed network for circular polarization slot array antenna. Wireless Personal Communications, 111, 2129–2136. https://doi.org/10.1007/s11277-019-06975-x

    Article  Google Scholar 

  54. Moradi, K., Pourizad, A., & Nikmehr, S. (2022). An efficient graphene-based reconfigurable Terahertz ring antenna design. AEU International Journal of Electronics and Communications, 149, 154177. https://doi.org/10.1016/j.aeue.2022.154177

    Article  Google Scholar 

  55. Amn-e-Elahi, A., Rezaei, P., Karami, F., Hyjazie, F., & Boutayeb, H. (2022). Analysis and design of a stacked PCBs-based quasi-helix antenna. IEEE Transactions on Antennas and Propagation. https://doi.org/10.1109/TAP.2022.3209197

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Semnan University.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Software, Validation, and Writing–original draft, review & editing: NK. Supervision, Project administration: FTH. Supervision, Project administration: PR.

Corresponding author

Correspondence to Farzad Tavakkol Hamedani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Ethical approval

We the undersigned declare that the manuscript entitled “Switchable circular polarization in flower-shaped reconfigurable graphene-based THz microstrip patch antenna” is original, has not been fully or partly published before, and is not currently being considered for publication elsewhere. Also, results are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent for publication

All authors declare that they participate in the study and in the development of this manuscript. All authors have read final version and give consent for the article to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, N., Tavakkol Hamedani, F. & Rezaei, P. Switchable circular polarization in flower-shaped reconfigurable graphene-based THz microstrip patch antenna. Analog Integr Circ Sig Process 118, 259–270 (2024). https://doi.org/10.1007/s10470-023-02215-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02215-2

Keywords

Navigation