Skip to main content
Log in

Application of intermediate CMOS layer-based defected ground structure to design a dual-band on-chip antenna with improved gain

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel CPW-fed dual-band on-chip antenna (OCA) by introducing a crossed bowtie shaped defected ground structure (CB-DGS) in one of the intermediate layers of the CMOS layout is proposed. In general, a CPW fed OCA has its ground plane on the same plane containing the antenna. However, in this work, a DGS is introduced in one of the intermediate layer using through silicon vias to obtain dual band characteristics with improved gain performance of the antenna. A 10 dB operating band of 9 GHz (2.25–11.75 GHz) is achieved by employing meandered loop miniaturization technique on the antenna designed on top CMOS layer, wherein the introduction of DGS layer enforced a comparatively less stop band at the middle of the operating band and the resultant structure offered a dual-band resonance characteristic at 3.1 GHz and 10.4 GHz. Here, the intermediate DGS layer between the top-layered antenna and silicon wafer reduces the substrate loss by preventing the coupling of the electromagnetic radiation with the substrate and enhances the antenna gain significantly at both the resonance frequencies respectively by \(+\) 16.01 dB and \(+\) 12.7 dB. A prototype of the proposed antenna structure is fabricated and the obtained simulated result is validated through experimental measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Taiwan semiconductor manufacturing company (TSMC) annual report 2020(1) (2020) (2021)

  2. Chen, I., Chiou, H., & Chen, N. (2009). V-band on-chip dipole-based antenna. IEEE Transactions on Antennas and Propagation, 57(10), 2853–2861.

    Article  ADS  Google Scholar 

  3. Alibakhshikenari, M., Virdee, B. S., See, C. H., Shukla, P., Salekzamankhani, S., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. (2020). Study on improvement of the performance parameters of a novel 0.41–0.47 THz on-chip antenna based on metasurface concept realized on 50 \(\mu\)m GaAs-layer. Scientific Reports, 10(1), 11034. https://doi.org/10.1038/s41598-020-68105-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baek, Y.-H., Truong, L. H., Park, S.-W., Lee, S.-J., Chae, Y.-S., Rhee, E.-H., Park, H.-C., & Rhee, J.-K. (2009). 94-GHz log-periodic antenna on GaAs substrate using air-bridge structure. IEEE Antennas and Wireless Propagation Letters, 8, 909–911. https://doi.org/10.1109/LAWP.2009.2025523

    Article  ADS  Google Scholar 

  5. Khan, W. T., Ulusoy, A. Ç., Dufour, G., Kaynak, M., Tillack, B., Cressler, J. D., & Papapolymerou, J. (2015). A D-band micromachined end-fire antenna in 130-nm SiGe BiCMOS technology. IEEE Transactions on Antennas and Propagation, 63(6), 2449–2459.

    Article  ADS  MathSciNet  Google Scholar 

  6. Sievert, B., Svejda, J. T., Wittemeier, J., Pohl, N., Erni, D., & Rennings, A. (2021). Equivalent circuit model separating dissipative and radiative losses for the systematic design of efficient microstrip-based on-chip antennas. IEEE Transactions on Microwave Theory and Techniques, 69(2), 1282–1294. https://doi.org/10.1109/TMTT.2020.3040453

    Article  ADS  Google Scholar 

  7. Alibakhshikenari, M., Virdee, B. S., See, C. H., Abd-Alhameed, R. A., Falcone, F., & Limiti, E. (2020). High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits. Scientific Reports, 10(1), 1–9.

    Google Scholar 

  8. Pilard, R., Gianesello, F., Gloria, D., Titz, D., Ferrero, F., & Luxey, C. (2011). 60 GHz HR SOI CMOS antenna for a system-on-chip integration scheme targeting high data-rate kiosk applications. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI) (pp. 895–898)

  9. Zevallos Luna, J. A., Dussopt, L., & Siligaris, A. (2013). Hybrid on-chip/in-package integrated antennas for millimeter-wave short-range communications. IEEE Transactions on Antennas and Propagation, 61(11), 5377–5384. https://doi.org/10.1109/TAP.2013.2279832

    Article  ADS  Google Scholar 

  10. Adela, B. B., van Beurden, M. C., Van Zeijl, P., & Smolders, A. B. (2018). High-isolation array antenna integration for single-chip millimeter-wave FMCW radar. IEEE Transactions on Antennas and Propagation, 66(10), 5214–5223.

    Article  ADS  Google Scholar 

  11. Jin, C., Sekhar, V. N., Bao, X., Chen, B., Zheng, B., & Li, R. (2013). Antenna-in-package design based on wafer-level packaging with through silicon via technology. IEEE Transactions on Components, Packaging and Manufacturing Technology, 3(9), 1498–1505. https://doi.org/10.1109/TCPMT.2013.2261855

    Article  CAS  Google Scholar 

  12. Babakhani, A., Guan, X., Komijani, A., Natarajan, A., & Hajimiri, A. (2006). A 77-GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas. IEEE Journal of Solid-State Circuits, 41(12), 2795–2806.

    Article  ADS  Google Scholar 

  13. Hou, D., Xiong, Y.-Z., Goh, W.-L., Hu, S., Hong, W., & Madihian, M. (2012). 130-GHz on-chip meander slot antennas with stacked dielectric resonators in standard CMOS technology. IEEE Transactions on Antennas and Propagation, 60(9), 4102–4109.

    Article  ADS  Google Scholar 

  14. Sallam, M. O., Serry, M., Sedky, S., Shamim, A., De Raedt, W., Vandenbosch, G. A., & Soliman, E. A. (2015). Micromachined on-chip dielectric resonator antenna operating at 60 GHz. IEEE Transactions on Antennas and Propagation, 63(8), 3410–3416.

    Article  ADS  MathSciNet  Google Scholar 

  15. McKinzie, W. E., Nair, D. M., Thrasher, B. A., Smith, M. A., Hughes, E. D., & Parisi, J. M. (2016). 60-GHz 2 \(\times\) 2 LTCC patch antenna array with an integrated EBG structure for gain enhancement. IEEE Antennas and Wireless Propagation Letters, 15, 1522–1525.

    Article  ADS  Google Scholar 

  16. Kuo, H., Yue, H., Ou, Y., Lin, C., & Chuang, H. (2013). A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi antenna and balun bandpass filter for very-short-range gigabit communications. IEEE Transactions on Microwave Theory and Techniques, 61(4), 1681–1691.

    Article  ADS  Google Scholar 

  17. Pan, S., Caster, F., Heydari, P., & Capolino, F. (2014). A 94-GHz extremely thin metasurface-based BiCMOS on-chip antenna. IEEE Transactions on Antennas and Propagation, 62(9), 4439–4451. https://doi.org/10.1109/TAP.2014.2330575

    Article  ADS  Google Scholar 

  18. Khandelwal, M. K., Kanaujia, B. K., & Kumar, S. (2017). Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends. International Journal of Antennas and Propagation, 2017(1), 1–22.

    Article  Google Scholar 

  19. Weng, L. H., Guo, Y.-C., Shi, X.-W., & Chen, X.-Q. (2008). An overview on defected ground structure. Progress in Electromagnetics Research B, 7, 173–189.

    Article  Google Scholar 

  20. Arya, A. K., Kartikeyan, M. V., & Patnaik, A. (2010). Defected ground structure in the perspective of microstrip antennas: A review. Frequenz, 64(5–6), 79–84. https://doi.org/10.1515/FREQ.2010.64.5-6.79

    Article  ADS  Google Scholar 

  21. Cheema, H. M., & Shamim, A. (2013). The last barrier: On-chip antennas. IEEE Microwave Magazine, 14(1), 79–91.

    Article  Google Scholar 

  22. Dwari, S., & Sanyal, S. (2007). Compact wide stopband low-pass filter using rectangular patch compact microstrip resonant cell and defected ground structure. Microwave and Optical Technology Letters, 49(4), 798–800.

    Article  Google Scholar 

  23. Chen, H.-J., Huang, T.-H., Chang, C.-S., Chen, L.-S., Wang, N.-F., Wang, Y.-H., & Houng, M.-P. (2006). A novel cross-shape DGS applied to design ultra-wide stopband low-pass filters. IEEE Microwave and Wireless Components Letters, 16(5), 252–254. https://doi.org/10.1109/LMWC.2006.873594

    Article  Google Scholar 

  24. Saad, M. R., Tahar, F., Chalise, S., Barakat, A., Yoshitomi, K., & Pokharel, R. K. (2018). High FoM dual band wireless power transfer using bow-tie defected ground structure resonators. In 2018 IEEE Wireless Power Transfer Conference (WPTC) (pp. 1–4). https://doi.org/10.1109/WPT.2018.8639134

  25. Kumar, A., & Machavaram, K. V. (2013). Microstrip filter with defected ground structure: A close perspective. International Journal of Microwave and Wireless Technologies, 5(5), 589–602.

    Article  Google Scholar 

  26. Salvador, C., Borselli, L., Falciani, A., & Maci, S. (1995). Dual frequency planar antenna at S and X bands. Electronics Letters, 31(20), 1706–1707.

    Article  ADS  Google Scholar 

  27. Roy, S. S., Nagasekhar, T., Saha, C., Mane, S. B., Padmavathy, C. S., Umadevi, G., & Kumar, N. (2022). Dual band (S-X) ground station antenna for low earth orbit (LEO) satellite tracking application. IEEE Access, 10, 80910–80917. https://doi.org/10.1109/ACCESS.2022.3190417

    Article  Google Scholar 

  28. Yordanov, H., & Russer, P. (2009). Wireless inter-chip and intra-chip communication. In 2009 European Microwave Conference (EuMC) (pp. 145–148). https://doi.org/10.23919/EUMC.2009.5296159

  29. Charlot, E., Hamada, M., & Kuroda, T. (2021). An on-chip antenna with an area of 0.9 square millimeters for RFID applications in the 5.8 GHz–24 GHz range. In 2020 International Symposium on Antennas and Propagation (ISAP) (pp. 41–42). https://doi.org/10.23919/ISAP47053.2021.9391369

  30. O, K. K., Kim, K., Floyd, B., Mehta, J., Yoon, H., Hung, C. -M., Bravo, D., Dickson, T., Guo, X., Li, R., Trichy, N., Caserta, J., Bomstad, W., Branch, J., Yang, D. -J., Bohorquez, J., Gao, L., Sugavanam, A., Lin, J. -J., Chen, J., Martin, F., & Brewer, J. (2003). Wireless communications using integrated antennas. In Proceedings of the IEEE 2003 International Interconnect Technology Conference (Cat. No. 03TH8695) (pp. 111–113). https://doi.org/10.1109/IITC.2003.1219727

  31. Carmo, J., Mendes, P., Couto, C., & Correia, J. (2006). 5.7 GHz on-chip antenna/RF CMOS transceiver for wireless sensor networks. Sensors and Actuators A: Physical, 132(1), 47–51.

    Article  CAS  Google Scholar 

  32. Mendes, P., Polyakov, A., Bartek, M., Burghartz, J., & Correia, J. (2006). Integrated chip-size antennas for wireless microsystems: Fabrication and design considerations. Sensors and Actuators A: Physical, 125(2), 217–222.

    Article  CAS  Google Scholar 

  33. O, K. K., Kim, K., Floyd, B. A., Mehta, J. L., Yoon, H., Hung, C.-M., Bravo, D., Dickson, T. O., Guo, X., Li, R., Trichy, N., Caserta, J., Bomstad, W. R., Branch, J., Yang, D.-J., Bohorquez, J., Seok, E., Gao, L., Sugavanam, A., … Brewer, J. E. (2005). On-chip antennas in silicon ICS and their application. IEEE Transactions on Electron Devices, 52(7), 1312–1323. https://doi.org/10.1109/TED.2005.850668

    Article  ADS  CAS  Google Scholar 

  34. Wu, J., Kodi, A. K., Kaya, S., Louri, A., & Xin, H. (2017). Monopoles loaded with 3-D-printed dielectrics for future wireless intrachip communications. IEEE Transactions on Antennas and Propagation, 65(12), 6838–6846.

    Article  ADS  Google Scholar 

  35. Liu, W.-C. (2007). A coplanar waveguide-fed folded-slot monopole antenna for 5.8 GHz radio frequency identification application. Microwave and Optical Technology Letters, 49(1), 71–74.

    Article  Google Scholar 

  36. Yi, D., Chong, L., Xiao-Wei, H., & Hong-Zhou, T. (2012). 12 GHz wireless clock delivery using on-chip antennas: A case for future intra/inter-chip wireless interconnect. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE) (Vol. 1, pp. 212–215). IEEE

  37. Kim, K., & Ko, K. (1999). Integrated dipole antennas on silicon substrates for intra-chip communication. In IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010) (Vol. 3, pp. 1582–1585). IEEE

  38. Lin, J.-J., Wu, H.-T., Su, Y., Gao, L., Sugavanam, A., & Brewer, J. E. (2007). Communication using antennas fabricated in silicon integrated circuits. IEEE Journal of Solid-State Circuits, 42(8), 1678–1687.

    Article  ADS  Google Scholar 

  39. Passiopoulos, G., Nam, S., Georgiou, A., Ashtiani, A., Robertson, I., & Grindrod, E. (1998). V-band single chip, direct carrier BPSK modulation transmitter with integrated patch antenna. In 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192) (Vol. 1, pp. 305–308). IEEE

  40. Kraus, J. D. (1988). Antennas. Electrical Engineering Series. McGraw-Hill. https://books.google.co.in/books?id=JHEbPQAACAAJ

  41. Wang, Y., Guo, C., Yin, J., Zhai, H., & Zhong, W. (2021). High isolation high front-to-back ratio antenna based on slotted SIW. In 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT) (pp. 1–3). https://doi.org/10.1109/ICMMT52847.2021.9618080

  42. Wong, K.-L. (2004). Compact and broadband microstrip antennas (Vol. 168). NEW YORK: Wiley.

    Google Scholar 

Download references

Acknowledgements

This work is supported by Visvesvaraya Ph.D. scheme, Ministry of Electronics and Information Technology (MeitY), Govt. of India, Grant No. PhD-MLA/4(29)/2015-16/01. Authors are thankful to Indian Nano User Program (INUP) run by MeitY at Indian Institute of Science, Bengaluru (IISc) for their lab support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Mandal, S.K. Application of intermediate CMOS layer-based defected ground structure to design a dual-band on-chip antenna with improved gain. Analog Integr Circ Sig Process 118, 247–257 (2024). https://doi.org/10.1007/s10470-023-02212-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-023-02212-5

Keywords

Navigation