Skip to main content
Log in

A flux controlled electronically tunable fully floating OTA based memristor emulator

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, flux controlled high frequency floating/grounded type memristor emulator circuit based on single OTA (Operational Transconductance Amplifier) is introduced by using CMOS technology. The emulator is realized using single OTA, multi output transconductance amplifier, a grounded resistor and a grounded capacitor. The proposed circuit can be configured in both incremental and decremental topology by changing the connections. The proposed circuit has been simulated in LT-Spice using 0.18 μm CMOS parameters at a supply voltage of ± 1.5 V. The memristor characteristics can be electronically tuned by changing the transconductance of the OTAs. In addition, with change of the capacitor value in the proposed circuit, the pinched hysteresis loop observed in the current versus voltage plane can be held at higher frequencies. The proposed emulator circuit performs well up to 20 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  2. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453(7191), 80–83.

    Article  Google Scholar 

  3. Chua, L. O., Kang, S. M. (1976) Memristive devices and systems. In Proceedings of the IEEE (Vol. 64, no. 2, pp. 209–223).

  4. Benderli, S., & Wey, T. A. (2009). On SPICE macromodelling of TiO2 memristors. Electronics Letters, 45, 377–379.

    Article  Google Scholar 

  5. Biolek, Z., Biolek, D., Biolkova, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering 18.

  6. Rak, Á., & Cserey, G. (2010). Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29(4), 632–636.

    Article  Google Scholar 

  7. Mutlu, R., Karakulak, E. (2010). Emulator circuit of Ti02 memristor with linear dopant drift made using analog multiplier. In National conference on electrical, electronics and computer engineering, Bursa, Turkey (pp. 380–384).

  8. Sánchez-López, C., & Aguila-Cuapio, L. E. (2017). A 860 kHz grounded memristor emulator circuit. International Journal of Electronics and Communications (AEÜ), 73, 23–33.

    Article  Google Scholar 

  9. Babacan, Y., Yesil, A., & Kacar, F. (2017). Memristor emulator with tunable characteristic and its experimental results. International Journal of Electronics and Communications (AEÜ), 81, 99–104.

    Article  Google Scholar 

  10. Ayten, U. E., Minaei, S., & Sağbaş, M. (2017). Memristor emulator circuits using single CBTA. AEU – International Journal of Electronics and Communications, 82, 109–118. https://doi.org/10.1016/j.aeue.2017.08.008

    Article  Google Scholar 

  11. Abuelma’atti, M. T., & Khalifa, Z. J. (2014). A new memristor emulator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 80(3), 577–584.

    Article  Google Scholar 

  12. Ranjan, R., Sharma, P., Sagar, S. P. S., Raj, N., Kumari, B., & Khateb, F. (2018). Memristor emulator circuit using multiple-output OTA and its experimental results. Journal of Circuits, Systems and Computers, 28, 1950166.

    Article  Google Scholar 

  13. Abuelmaatti, M. T., & Zainulabideen, J. K. (2015). A continuous-level memristor emulator and its application in a multivibrator circuit. AEU-International Journal of Electronics and Communications, 69(4), 771–775.

    Google Scholar 

  14. Yeşil, A., Babacan, Y., & Kaçar, F. (2014). A new DDCC based memristor emulator circuit and its applications. Microelectronics Journal, 45(3), 282–287.

    Article  Google Scholar 

  15. Yesil, A. (2018). A new grounded memristor emulator based on MOSFET-C. AEU - International Journal of Electronics and Communications, 19, 143–149.

    Article  Google Scholar 

  16. Petrovic, P. B. (2021). Simple flux-controlled grounded memristor emulator circuits based on current follower. Analog Integrated Circuits and Signal Processing, 108, 215–219.

    Article  Google Scholar 

  17. Sánchez-López, C., Mendoza-Lopez, J., Carrasco-Aguilar, M. A., & Muñiz-Montero, C. (2014). A floating analog memristor emulator circuit. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 309–313.

    Google Scholar 

  18. Yu, D., Iu, H. H. C., Fitch, A. L., & Liang, Y. (2014). A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 61, 2888–2896.

    Article  Google Scholar 

  19. Abuelma’atti, M. T., & Khalifa, Z. J. (2016). A new floating memristor emulator and its application in frequency-to-voltage conversion. Analog Integrated Circuits and Signal Processing, 86, 141–147.

    Article  Google Scholar 

  20. Babacan, Y., & Kaçar, F. (2017). Floating memristor emulator with subthreshold region. Analog Integrated Circuits and Signal Processing, 90, 471–475.

    Article  Google Scholar 

  21. Petrovic, P. B. (2018). Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integrated Circuits and Signal Processing, 96, 417–433.

    Article  Google Scholar 

  22. Sözen, H., & Çam, U. (2016). Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 89, 655–663.

    Article  Google Scholar 

  23. Pal, I., Kumar, V., Aishwarya, N., Nayak, A., & Islam, A. (2019). A VDTA-based robust electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 104, 47–59.

    Article  Google Scholar 

  24. Kanyal, G., Kumar, P., Paul, S. K., & Kumar, A. (2018). OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU - International Journal of Electronics and Communications, 92, 124–145.

    Article  Google Scholar 

  25. Ranjan, R. K., Sagar, S., Roushan, S., Kumari, B., Rani, N., & Khateb, F. (2019). High-frequency floating memristor emulator and its experimental results. IET Circuits, Devices & Systems, 13(3), 292–302.

    Article  Google Scholar 

  26. Yesil, A., Babacan, Y., & Kacar, F. (2019). Electronically tunable memristor based on VDCC. AEU-International Journal of Electronics and Communications, 107, 282–290.

    Google Scholar 

  27. Raj, N., Ranjan, R. K., & Khateb, F. (2020). Flux-controlled memristor emulator and its experimental results. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28, 1050–1061.

    Article  Google Scholar 

  28. Yadav, N., Rai, S. K., & Pandey, R. (2020). New grounded and floating memristor emulators using OTA and CDBA. International Journal of Circuit Theory and Applications, 48, 1154–1179.

    Article  Google Scholar 

  29. Yadav, N., Rai, S. K., & Pandey, R. (2020). Novel Memristor Emulators using Fully Balanced VDBA and Grounded Capacitor. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45, 229–245.

    Article  Google Scholar 

  30. Petrovic, P. B. (2019). Tunable flux-controlled floating memristor emulator circuits. IET Circuits, Devices and Systems, 13, 479–486.

    Article  Google Scholar 

  31. Gozukucuk, M. M., Menekay, S., & Ozenli, D. (2021). A novel fully floating memristor emulator using OTA and passive elements. In 13th international conference on electrical and electronics engineering (ELECO) (pp. 29–33).

  32. Nedungadi, A., & Viswanathan, T. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, 31(10), 891–894. https://doi.org/10.1109/TCS.1984.1085428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Özenli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gözüküçük, M., Menekay, S. & Özenli, D. A flux controlled electronically tunable fully floating OTA based memristor emulator. Analog Integr Circ Sig Process 113, 171–184 (2022). https://doi.org/10.1007/s10470-022-02074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02074-3

Keywords

Navigation