Skip to main content
Log in

A high linearity UWB LNA using a novel linearizer feedback, based on complementary derivation superposition techniques

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a low-noise amplifier (LNA) with superior linearity for ultra-wideband (UWB) purposes. Linearity is a significant parameter for 5G receivers because the 5G new radio bands overlap with the UWB frequency band. In the proposed design, the Complementary Derivation Superposition (CDS) and the Shunt-Feedback Common Source techniques were combined using a novel circuit topology. The active and passive feedback captured the nonlinear signal, and the auxiliary PMOS transistor helped to realize low noise figure (NF), high gain, and highly linearity. The inductors at the gate and drain, in cooperation with the LC filter, were selected to perform the Input Impedance Matching (IIM) over the entire UWB frequency band. Finally, the novel structure was designed and verified by post-layout simulations using the 65-nm CMOS technology. The results obtained from the Post-Layout simulations in the whole of UWB band (from 3.1 to 10.6 GHz) are as follows: the power gain and NF are 12.4 ± 0.3 dB and 3.6 ± 0.3 dB, respectively. The S11 parameter is better than − 10 dB in the desired band. The circuit consumes 10.56 mW under 1.2 V supply voltage. The maximum and average of third-order Input Intercept Point (IIP3) are 17.93 dBm and 6.22 dBm, respectively. The layout size of the proposed LNA is 0.827 mm2. In addition, a compressive Process-Voltage-Temperature (PVT) analysis is presented, that proves the circuit robustness against process, voltage and temperature variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Duan, Z., & Liang, J. (2019). Non-contact detection of vital signs using a uwb radar sensor. IEEE Access, 7, 36888–36895. https://doi.org/10.1109/ACCESS.2018.2886825

    Article  Google Scholar 

  2. Rasekh, A., & Bakhtiar, M. S. (2019). Wide-band rf front end for saw-less receivers employing active feedback and far out-of-band blocker rejection circuit. IEEE Journal of Solid-State Circuits, 54(6), 1528–1540. https://doi.org/10.1109/JSSC.2019.2894996

    Article  Google Scholar 

  3. Hedayati, H., Lau, W. F. A., Kim, N., Aparin, V., & Entesari, K. (2015). A 1.8 dB NF blocker-filtering noise-canceling wideband receiver with shared TIA in 40 nm CMOS. IEEE Journal of Solid-State Circuits, 50(5), 1148–1164. https://doi.org/10.1109/JSSC.2015.2403324

    Article  Google Scholar 

  4. Huang, D., Yang, X., Chen, H., Khan, M. I., & Lin, F. (2018). A 0.3–3.5 GHz active-feedback low-noise amplifier with linearization design for wideband receivers. AEU—International Journal of Electronics and Communications, 84, 192–198. https://doi.org/10.1016/j.aeue.2017.12.003

    Article  Google Scholar 

  5. Luo, P., Liu, M., Chen, L., Gao, J., Zhu, Z., & Yang, Y. (2019). A 2.99 dB NF 15.6 dB Gain 3–10GHz Ultra-wideband low-noise amplifier for UWB systems in 65 nm CMOS. Analog Integrated Circuits and Signal Processing, 101(3), 651–657. https://doi.org/10.1007/s10470-019-01547-2

    Article  Google Scholar 

  6. Kumar, M., & Deolia, V. K. (2019). A wideband design analysis of LNA utilizing complimentary common gate stage with mutually coupled common source stage. Analog Integrated Circuits and Signal Processing, 98(3), 575–585. https://doi.org/10.1007/s10470-018-1355-6

    Article  Google Scholar 

  7. Moghadam, P. P., & Abrishamifar, A. (2017). An inductorless wideband LNA with a new noise canceling technique. Turkish Journal of Electrical Engineering and Computer Sciences, 25(2), 1147–1153. https://doi.org/10.3906/elk-1407-104

    Article  Google Scholar 

  8. Eskandari, R., Ebrahimi, A., & Baghtash, H. F. (2020). Low power balanced balun LNA employing double noise-canceling techniques. Analog Integrated Circuits and Signal Processing, 105(3), 305–318. https://doi.org/10.1007/s10470-020-01690-1

    Article  Google Scholar 

  9. Kim, J., Hoyos, S., & Silva-Martinez, J. (2010). Wideband common-gate CMOS LNA employing dual negative feedback with simultaneous noise, gain, and bandwidth optimization. IEEE Transactions on Microwave Theory and Techniques, 58(9), 2340–2351. https://doi.org/10.1109/TMTT.2010.2057790

    Article  Google Scholar 

  10. Kim, B. K., Im, D., Choi, J., & Lee, K. (2014). A highly linear 1 GHz 1.3 dB NF CMOS low-noise amplifier with complementary transconductance linearization. IEEE Journal of Solid-State Circuits, 49(6), 1286–1302. https://doi.org/10.1109/JSSC.2014.2319262

    Article  Google Scholar 

  11. Sahafi, A., Sobhi, J., & Koozehkanani, Z. D. (2016). Linearity improvement of gm-boosted common gate LNA: Analysis to design. Microelectronics Journal, 56, 156–162. https://doi.org/10.1016/j.mejo.2016.08.015

    Article  Google Scholar 

  12. Tarighat, A. P., & Yargholi, M. (2016). A CMOS low noise amplifier with employing noise cancellation and modified derivative superposition technique. Microelectronics Journal, 54, 116–125. https://doi.org/10.1016/j.mejo.2016.05.015

    Article  Google Scholar 

  13. Jafarnejad, R., Jannesari, A., & Sobhi, J. (2017). A linear ultra wide band low noise amplifier using pre-distortion technique. AEU—International Journal of Electronics and Communications, 79, 172–183. https://doi.org/10.1016/j.aeue.2017.05.046

    Article  Google Scholar 

  14. Guo, B., & Li, X. (2013). A 1.6–9.7 GHz CMOS LNA linearized by post distortion technique. IEEE Microwave and Wireless Components Letters, 23(11), 608–610. https://doi.org/10.1109/LMWC.2013.2281426

    Article  Google Scholar 

  15. Yu, H., Chen, Y., Boon, C. C., Mak, P. I., & Martins, R. P. (2020). A 0.096-mm2 1–20-GHz triple-path noise- canceling common-gate common-source LNA with dual complementary pMOS-nMOS configuration. IEEE Transactions on Microwave Theory and Techniques, 68(1), 144–159. https://doi.org/10.1109/TMTT.2019.2949796

    Article  Google Scholar 

  16. Yaghouti, B. D., & Yavandhasani, J. (2021). A high linearity low power low-noise amplifier designed for ultra-wide-band receivers. Analog Integrated Circuits and Signal Processing, 107(1), 109–120. https://doi.org/10.1007/s10470-020-01783-x

    Article  Google Scholar 

  17. Rastegar, H., & Ryu, J. Y. (2015). A broadband Low Noise Amplifier with built-in linearizer in 0.13-μm CMOS process. Microelectronics Journal, 46(8), 698–705. https://doi.org/10.1016/j.mejo.2015.05.006

    Article  Google Scholar 

  18. Dai, R., Zheng, Y., He, J., Kong, W., & Zou, S. (2017). A duplex current-reused CMOS LNA with complementary derivative superposition technique. International Journal of Circuit Theory and Applications, 45(1), 110–119. https://doi.org/10.1002/cta.2235

    Article  Google Scholar 

  19. Hampel, S. K., Schmitz, O., Tiebout, M., & Rolfes, I. (2009). Inductorless 1–10.5 GHz wideband LNA for multistandard applications. In Proceedings of Technical Papers—2009 IEEE Asian Solid-State Circuits Conference, A-SSCC 2009, 269–272. https://doi.org/10.1109/ASSCC.2009.5357261

  20. Chen, M., & Lin, J. (2009). A 0.1–20 GHz low-power self-biased resistive-feedback LNA in 90 nm digital CMOS. IEEE Microwave and Wireless Components Letters, 19(5), 323–325. https://doi.org/10.1109/LMWC.2009.2017608

    Article  MathSciNet  Google Scholar 

  21. Bozorg, A., & Staszewski, R. B. (2021). A 02–4-GHz LN(T)A in 28-nm CMOS for 5G exploiting noise reduction and current reuse. IEEE Journal of Solid-State Circuits, 56(2), 404–415. https://doi.org/10.1109/JSSC.2020.3018680

    Article  Google Scholar 

  22. Sahoolizadeh, H., Jannesari, A., & Dousti, M. (2018). Noise suppression in a common-gate UWB LNA with an inductor resonating at the source node. AEU—International Journal of Electronics and Communications, 96, 144–153. https://doi.org/10.1016/j.aeue.2018.09.007

    Article  Google Scholar 

  23. Traversi, G., Manghisoni, M., Re, V., Gaioni, L., & Ratti, L. (2012). Perspectives of 65 nm CMOS technologies for high performance front-end electronics. Proceedings of Science, 2012-Septe. https://doi.org/10.22323/1.167.0026

  24. Post, I., Akbar, M., Curello, G., Gannavaram, S., Hafez, W., Jalan, U., & Jan, C. H. (2006). A 65nm CMOS SOC technology featuring strained silicon transistors for RF applications. Technical Digest—International Electron Devices Meeting, IEDM. https://doi.org/10.1109/IEDM.2006.346816

    Article  Google Scholar 

  25. Chaharmahali, I., Asadi, S., Dorostkar, B., & BosraMalaknezhadAbedini, M. M. M. (2017). A new method modifying single miller feedforward frequency compensation to drive large capacitive loads: Putting an attenuator in the path. Analog Integrated Circuits and Signal Processing, 93(1), 61–70. https://doi.org/10.1007/s10470-017-1026-z

    Article  Google Scholar 

  26. Hsieh, J. Y., & Lin, K. Y. (2020). A 0.6-V low-power variable-gain LNA in 0.18-\mu m CMOS technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(1), 23–26. https://doi.org/10.1109/TCSII.2019.2902301

    Article  Google Scholar 

  27. Saberkari, A., Shirmohammadli, V., & Yagoub, M. C. E. (2016). A 3–6 GHz current reused noise canceling low noise amplifier for WLAN and WPAN applications. Wireless Personal Communications, 86(3), 1359–1376. https://doi.org/10.1007/s11277-015-2993-y

    Article  Google Scholar 

  28. Hari Kishore, K., Prakash, S., & Venkataramani, B. (2020). 1.2 V asymmetric-CCC based sub-3 dB NF high IIP3 linearity wideband balun-LNA. AEU—International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2020.153090

    Article  Google Scholar 

  29. Nikbakhsh, M. R., Abiri, E., Ghasemian, H., & Salehi, M. R. (2018). A two stage variable-gain low-noise amplifier for X-Band in 08 µm CMOS. Wireless Personal Communications, 98(1), 173–187. https://doi.org/10.1007/s11277-017-4862-3

    Article  Google Scholar 

  30. Babasafari, M., & Yargholi, M. (2020). A low power CMOS UWB LNA with dual-band notch filter using forward body biasing. IETE Journal of Research, 66(2), 127–138. https://doi.org/10.1080/03772063.2018.1487341

    Article  Google Scholar 

  31. Chung, T., Lee, H., Jeong, D., Yoon, J., & Kim, B. (2015). A wideband CMOS noise-canceling low-noise amplifier with high linearity. IEEE Microwave and Wireless Components Letters, 25(8), 547–549. https://doi.org/10.1109/LMWC.2015.2440762

    Article  Google Scholar 

  32. Arshad, S., Ramzan, R., Muhammad, K., & Wahab, Q. U. (2015). A sub-10mw, noise cancelling, wideband LNA for UWB applications. AEU—International Journal of Electronics and Communications, 69(1), 109–118. https://doi.org/10.1016/j.aeue.2014.08.002

    Article  Google Scholar 

  33. Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU—International Journal of Electronics and Communications, 69(1), 119–125. https://doi.org/10.1016/j.aeue.2014.08.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Yavandhasani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghouti, B.D., Yavandhasani, J. A high linearity UWB LNA using a novel linearizer feedback, based on complementary derivation superposition techniques. Analog Integr Circ Sig Process 110, 443–454 (2022). https://doi.org/10.1007/s10470-021-01960-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01960-6

Keywords

Navigation