Skip to main content
Log in

Improvement of wider bandwidth using dual e–shaped antenna for wireless communications in 5G applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper a dual E–shaped patch (ESP) antenna is proposed to enhance the wider impedance bandwidth to be use for wireless communications in 5G applications. The proposed dual ESP antenna performance analysis is carried out with stub in this work. The proposed ESP antenna with stub achieving reflection coefficient below -10 dB for obtained multiple resonant bands. The dual ESP antenna operates at 5.7 GHz,10.1 GHz,15.1 GHz,19.4 GHz and 22.4 GHz obtain reflection coefficient of −44.32 dB, −27.43 dB, −17.0 dB, −50.85 dB and −18.07 dB respectively. The proposed antenna with stub achieves impedance bandwidth of (4.28 GHz–24.06 GHz) with 139.37% enhancement resonate at 19.77 GHz operating frequency. The radiation patterns, current distributions and gain plots are observed at five resonant bands. The simulated results are matched well with the measured results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kumar, G., & Gupta, K. C. (1985). Directly coupled multiple resonator wide-band microstrip antenna. IEEE Transactions on Antennas and Propagation., 33(1), 588–593.

    Article  Google Scholar 

  2. Pozar, D. M. (1985). Microstrip antenna coupled to a microstrip-line. Electronics Letters, 21(2), 49–50.

    Article  Google Scholar 

  3. Lee, K. F., & Chen, W. (1997). Advances in Microstrip and Printed Antennas, New York, NY. Wiley. Ch. 5.

    Google Scholar 

  4. Yang, F., Zhang, X. X., Ye, X., & Rahmat-Samii, Y. (2001). Wide-band E-shaped patch antennas for wireless communications. IEEE Transactions on Antennas and Propagation, 49(7), 1094–1100.

    Article  Google Scholar 

  5. Chen, Y., Yang, S., & Nie, Z. (2010). Bandwidth enhancement method for low profile E-shaped microstrip patch antennas. IEEE Transactions on Antennas and Propagation, 58(7), 2442–2447.

    Article  Google Scholar 

  6. Ketavath, K. N., Gopi, D., & Rani, S. S. (2019). In-vitro test of miniaturized CPW-fed implantable conformal patch antenna at ISM band for biomedical applications. IEEE Access, 7, 43547–43554.

    Article  Google Scholar 

  7. Naik, K. K., & Sri, P. A. V. (2018). Design of concentric circular ring patch with DGS for dual-band at satellite communication and radar applications. Wireless Personal Communications, 98(3), 2993–3001.

    Article  Google Scholar 

  8. Luo, G. Q., Hu, Z. F., Li, W. J., Zhang, X. H., Sun, L. L., & Zheng, J. F. (2012). Bandwidth enhanced low profile cavity backed slot antenna by using hybrid SIW cavity modes. IEEE Transactions on Antennas and Propagation, 60(4), 1698–1704.

    Article  Google Scholar 

  9. Chair, R., Mak, C. L., Lee, K. F., Luk, K. M., & Kishk, A. A. (2005). Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Transactions on Antennas and Propagation, 53(8), 2645–2652.

    Article  Google Scholar 

  10. Caratelli, D., Cicchetti, R., Bit-Babik, G., & Faraone, A. (2006). A perturbed E-shaped patch antenna for wideband WLAN applications. IEEE Transactions on Antennas and Propagation, 54(6), 1871–1874.

    Article  Google Scholar 

  11. Ge, Y., Esselle, K. P., & Bird, T. S. (2006). A compact E-shaped patch antenna with corrugated wings. IEEE Transactions on Antennas and Propagation, 54(8), 2411–2413.

    Article  Google Scholar 

  12. Ang, B. K., & Chung, A. (2007). Wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications. Progress In Electromagnetics Research (PIER), 75, 397–407.

    Article  Google Scholar 

  13. Liu, S., Wen, Wu., & Fang, D.-G. (2016). Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2015.2453329

    Article  Google Scholar 

  14. Ali Nezhad, S. M., & Hassani, H. R. (2010). A Novel triband E-shaped printed monopole antenna for MIMO application. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2010.2051131

    Article  Google Scholar 

  15. Koutinos, A. G., Anagnostou, D. E., Joshi, R., Podilchak, S. K., Kyriacou, G. A., & Chryssomallis, M. T. (2018). Modified easy to fabricate E-shaped compact patch antenna with wideband and multiband functionality. IET Microwaves Antennas and Propagation, 12(3), 326–331.

    Article  Google Scholar 

  16. Chen, Y.-J., Liu, T.-W., & Wen-Hua, Tu. (2017). CPW-fed penta-band slot dipole antenna based on comb-like metal sheets. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2016.2569606

    Article  Google Scholar 

  17. Naik, K. K., Dattatreya, G., Chaitanya, R. P., Palla, R., & Rani, S. S. (2019). Enhancement of gain with corrugated Y-shaped patch antenna for triple-band applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(3), e21624.

    Article  Google Scholar 

  18. Debatosh Guha, D., Ganguly, D., George, S., Kumar, C., Sebastian, M. T., & Antar, Y. M. M. (2017). A new design approach for a hybrid monopole to achieve increased ultrawide bandwidth. IEEE Antennas and Propagation Magazine. https://doi.org/10.1109/MAP.2016.2629180

    Article  Google Scholar 

  19. Gong, B., Shi Ren, X., Yin Zeng, Y., Hua Su, L., & Rong Zheng, Q. (2014). Compact slot antenna for ultra-wide band. IET Microwave Antennas Propagation, 08, 200–205.

    Article  Google Scholar 

  20. Marchais, G. C., Le Ray, G., & Sharaiha, A. (2006). Stripline slot antenna for UWB communications. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2006.878894

    Article  Google Scholar 

  21. Kumar Naik, K., Chaithanya Satya Teja, S., Sailaja, B. V. S., & Sri, P. A. V. (2020). Design of flexible parasitic element patch antenna for biomedical application. Progress In Electromagnetics Research M, 94(1), 143–153.

    Article  Google Scholar 

  22. Ketavath, K. N. (2019). Enhancement of gain with coplanar concentric ring patch antenna. Wireless Personal Communications, 108(3), 1447–1457.

    Article  Google Scholar 

  23. Naik, K. K. (2018). Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications. AEU-International Journal of Electronic and Communication, 93, 103–108.

    Article  Google Scholar 

  24. Ghosh, A., Wolter, D. R., Andrews, J. G., & Chen, R. (2005). Broadband wireless access with WiMAX/8O2.16: current performance benchmarks and future potential. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2005.1391513

    Article  Google Scholar 

  25. Yang, Y., Chu, Q., & Mao, C. (2016). Multiband MIMO antenna for GSM DCS and LTE indoor applications. IEEE Antennas and Wireless Propagation Letters. https://doi.org/10.1109/LAWP.2016.2517188

    Article  Google Scholar 

  26. Sun, J., & Luk, K. M. (2019). A compact-size wideband optically transparent water patch antenna incorporating an annular water ring. IEEE Access., 7, 122964–122971.

    Article  Google Scholar 

  27. Dai, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., Xu, S., Yang, F., Chen, Z., Di Renzo, M., & Chae, C. B. (2020). Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access., 8, 45913–45923.

    Article  Google Scholar 

  28. AE Daniel, G Kumar (1995) Rectangular microstrip antennas with stub along the non-radiating edge for dual band operation, IEEE Antennas and Propagation Society International Symposium 1995 Digest, https://doi.org/10.1109/APS.1995.531017.

  29. Kumar Naik, K., Dattatreya Gopi (2018) Flexible CPW-fed split-triangular shaped patch antenna for WiMAX applications, Progress In Electromagnetics Research M, 70(1):157–166.

  30. Sailaja, B.V.S., Naik, K.K., (2021) Design and analysis of reconfigurable fractal antenna with RF-switches on a flexible substrate for X-band applications, Analog Integrated Circuits and Signal Processing, https://doi.org/10.1007/s10470-020-01767-x.

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), DST, India, Grant no: EEQ/2016/000754

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketavath Kumar Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, K.K. Improvement of wider bandwidth using dual e–shaped antenna for wireless communications in 5G applications. Analog Integr Circ Sig Process 109, 93–101 (2021). https://doi.org/10.1007/s10470-021-01919-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01919-7

Keywords

Navigation