Skip to main content
Log in

A design of readout IC with capacitively-coupled chopper current-feedback instrumentation amplifier in a 0.18 μm CMOS process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes a readout IC (ROIC), which consists of a capacitively coupled instrumentation amplifier (CCIA) and a discrete-time delta–sigma modulator. An active high-pass filter is embedded in the ripple reduction loop to suppress the noise ripple amplitude due to chop modulation. To accommodate the input with large electrode offset, dc-servo loop (DSL) and a 6 bit capacitive DAC are employed to suppress large electrode offset, while a positive feedback loop to boost its input impedance. The complete CCIA is implemented in a standard 0.18 μm 1P6M CMOS process. It occupies an area of 0.56 mm2 (including DSL) and consumes 52 μA current from a 3.3 V supply voltage. Measurement results indicate that the input reference noise PSD is 53.8 nV√Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wang, H., & Mercier, P. P. (2017). A current-mode capacitively-coupled chopper instrumentation amplifier for biopotential recording with resistive or capacitive electrodes. IEEE Transactions on Circuits & Systems II Express Briefs,65, 699–703.

    Article  Google Scholar 

  2. Chen, M., Liu, Y., Li, Z., Xiao, J., & Chen, J. (2016). A high dynamic range CMOS readout chip for electrochemical sensors. IEEE Sensors Journal,16(10), 3504–3513.

    Article  Google Scholar 

  3. Harrison, R. R. (2008). The design of integrated circuits to observe brain activity. Proceedings of the IEEE,96(7), 1203–1216.

    Article  Google Scholar 

  4. Suda, N., Nishanth, P. V., Basak, D., et al. (2014). A 0.5-V low power analog front-end for heart-rate detector. Analog Integrated Circuits & Signal Processing,81(2), 417–430.

    Article  Google Scholar 

  5. Zhu, Z., & Bai, W. (2016). A 0.5 V 1.3 μW analog front-end CMOS circuit. IEEE Transactions on Circuits and Systems II: Express Briefs,63, 523–527.

    Article  Google Scholar 

  6. Denison, T., Consoer, K., Santa, W., et al. (2008). A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE Journal of Solid-State Circuits,42(12), 2934–2945.

    Article  Google Scholar 

  7. Fan, Q., Huijsing, J., & Makinwa, K. (2012). A capacitively coupled chopper instrumentation amplifier with a ± 30 V common-mode range, 160 dB CMRR and 5 μV offset. Digest of Technical Papers—IEEE International Solid-State Circuits Conference,55, 374–376.

    Google Scholar 

  8. Fan, Q., Sebastiano, F., Huijsing, J. H., et al. (2011). A 1.8 W 60 nV Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE Journal of Solid-State Circuits,46(7), 1534–1543.

    Article  Google Scholar 

  9. Chandrakumar, H., & Markovic, D. (2016). 5.5 A 2 µW 40 mVpp linear-input-range chopper- stabilized bio-signal amplifier with boosted input impedance of 300 MΩ and electrode-offset filtering. In IEEE international solid-state circuits conference. IEEE.

  10. Wu, R., Huijsing, J. H., & Makinwa, K. A. A. (2011). A 21-bit read-out IC employing dynamic element matching with 0.037% gain error. In IEEE Asian Solid-State Circuits Conference 2011, Jeju (pp. 241–244).

  11. Wu, R., Makinwa, K. A. A., & Huijsing, J. H. (2009). A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple-reduction loop. In IEEE international solid-state circuits conference, ISSCC 2009, digest of technical papers, San Francisco, CA, USA, 8–12 February, 2009. IEEE.

  12. Liu, L., Zhang, Y., Mu, J., & Hua, T. (2019). A reused chopper/AM mixing amplifier for bio-signals acquisition. Analog Integrated Circuits and Signal Processing,99(2), 471–481.

    Article  Google Scholar 

  13. Liu, L., Hua, T., Zhang, Y., Mu, J., & Zhu, Z. (2019). A robust bio-IA with digitally-controlled DC-servo loop and improved pseudo-resistor. IEEE Transactions on Circuits and Systems II: Express Briefs. https://doi.org/10.1109/tcsii.2019.2922423.

    Article  Google Scholar 

  14. Wu, R., Makinwa, K. A. A., & Huijsing, J. H. (2009). A chopper current-feedback instrumentation amplifier with a 1 mHz. Noise Corner and an AC-Coupled Ripple Reduction Loop,44(12), 3232–3243.

    Google Scholar 

  15. Nagaraj, K. (1989). A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits. IEEE Transactions on Circuits and Systems,36(9), 1210–1216.

    Article  Google Scholar 

  16. Wei, R., Liu, Z., & Zhu, R. (2018). Low noise chopper-stabilized instrumentation amplifier with a ripple reduction loop. Analog Integrated Circuits and Signal Processing,96(3), 1–9.

    Article  Google Scholar 

  17. Wang, Z., Jiang, H., Zhang, C., et al. (2014). A chopper current feedback instrument amplifier with bandpass amplification stage. Analog Integrated Circuits and Signal Processing,81(3), 763–775.

    Article  Google Scholar 

  18. Yoo, J., Yan, L., El-Damak, D., et al. (2013). An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE Journal of Solid-State Circuits,48(1), 214–228.

    Article  Google Scholar 

  19. Akita, I., Ishida, M. (2013). A 0.06 mm 2, 14 nV/√Hz chopper instrumentation amplifier with automatic differential-pair matching. In ISSCC 2013, digest of technical papers. IEEE.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB2002604) and by the External Cooperation Program of the Chinese Academy of Sciences, Grant No. 172511KYSB20180080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhou, L., Chen, M. et al. A design of readout IC with capacitively-coupled chopper current-feedback instrumentation amplifier in a 0.18 μm CMOS process. Analog Integr Circ Sig Process 102, 309–321 (2020). https://doi.org/10.1007/s10470-019-01559-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01559-y

Keywords

Navigation