Skip to main content
Log in

A \({\mathbf{g}}_{{\mathbf{m}}}\)-boosted highly linear fully differential 3–5 GHz UWB LNA employing noise and distortion canceling technique

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A novel structure is presented to optimize the noise and linearity performance of a \({\text{g}}_{\text{m}}\)-boosted common gate (CG) ultra-wide-band low noise amplifier (LNA) by exploiting noise and distortion canceling technique. The \({\text{g}}_{\text{m}}\)-booster common source amplifier provides a degree of freedom to eliminate the limitation on the noise figure (NF) improvement, at a lower transconductance for the CG transistor. The applied noise and distortion canceling technique to the \({\text{g}}_{\text{m}}\)-boosted topology is used to minimize the dominant noise contribution and the second and third order non-linearity coefficients of the first stage components. The proposed LNA is configured in a differential topology to compensate the \(IIP_{2}\) of the structure. The Forward body bias technique is utilized for operating the LNA at a lower supply voltage and power consumption. The post-layout simulation results of the LNA, including bonding and electrostatic discharge circuits, with 90 nm TSMC RF CMOS technology show a power gain of 14.5 ± 05 dB, flat NF of 2.2 ± 0.1 dB, and \(S_{11}\) less than − 9.5 dB for 3–5 GHz frequency at a power consumption of 13.8 mW from 0.7 V supply voltage. The \(IIP_{3}\) and \(IIP_{2}\) measures are obtained as + 5.2 dBm and 55 dBm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zokaei, A., Amirabadi, A., & Ghasemzadeh, M. (2015). A 130 nm wideband fully differential linear low noise amplifier. In 2015 22nd international conference mixed design of integrated circuits & systems, IEEE (pp. 229–233). https://doi.org/10.1109/mixdes.2015.7208516.

  2. Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1-10.6 GHz wireless applications in 0.13 μm CMOS process. Microelectronics Journal, 44, 201–209. https://doi.org/10.1016/j.mejo.2013.01.004.

    Article  Google Scholar 

  3. Nakhlestani, A., Hakimi, A., & Movahhedi, M. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43, 444–451. https://doi.org/10.1016/j.mejo.2012.04.004.

    Article  Google Scholar 

  4. Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69, 119–125. https://doi.org/10.1016/j.aeue.2014.08.001.

    Article  Google Scholar 

  5. Pandey, S., & Singh, J. (2015). A low power and high gain CMOS LNA for UWB applications in 90 nm CMOS process. Microelectronics Journal, 46, 390–397. https://doi.org/10.1016/j.mejo.2015.01.002.

    Article  Google Scholar 

  6. Lee, J.-Y., Park, H.-K., Chang, H.-J., & Yun, T.-Y. (2012). Low-power UWB LNA with common-gate and current-reuse techniques. IET Microwaves, Antennas and Propagation, 6, 793. https://doi.org/10.1049/iet-map.2011.0415.

    Article  Google Scholar 

  7. Saberkari, A., Kazemi, S., Shirmohammadli, V., & Yagoub, M. C. E. (2016). gm-boosted flat gain UWB low noise amplifier with active inductor-based input matching network. Integration, the VLSI Journal, 52, 323–333. https://doi.org/10.1016/j.vlsi.2015.06.002.

    Article  Google Scholar 

  8. Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44, 821–826. https://doi.org/10.1016/j.mejo.2013.06.001.

    Article  Google Scholar 

  9. Chung, T., Lee, H., Jeong, D., Yoon, J., & Kim, B. (2015). A wideband CMOS noise-canceling low-noise amplifier with high linearity. IEEE Microwave and Wireless Components Letters, 25, 547–549. https://doi.org/10.1109/LMWC.2015.2440762.

    Article  Google Scholar 

  10. Bruccoleri, F., Klumperink, E. A. M., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39, 275–282. https://doi.org/10.1109/JSSC.2003.821786.

    Article  Google Scholar 

  11. Aparin, V., Brown, G., Larson, L.E. (2004). Linearization of CMOS LNA’s via optimum gate biasing. In 2004 IEEE international symposium on circuits and systems. (IEEE Cat. No.04CH37512), IEEE( p. IV-748-51). https://doi.org/10.1109/iscas.2004.1329112.

  12. Zhang, H., & Sanchez-Sinencio, E. (2011). Linearization techniques for CMOS low noise amplifiers: A tutorial. IEEE Transactions on Circuits and Systems I: Regular Papers, 58, 22–36. https://doi.org/10.1109/TCSI.2010.2055353.

    Article  MathSciNet  Google Scholar 

  13. Parvizi, M., & Nabavi, A. (2009). Improved derivative superposition scheme for simultaneous second- and third-order distortion cancellation in LNAs. Electronics Letters, 45, 1323. https://doi.org/10.1049/el.2009.1921.

    Article  Google Scholar 

  14. Gao, W., Chen, Z., Liu, Z., Cui, W., & Gui, X. (2015). A highly linear low noise amplifier with wide range derivative superposition method. IEEE Microwave and Wireless Components Letters, 25, 817–819. https://doi.org/10.1109/LMWC.2015.2496793.

    Article  Google Scholar 

  15. Rastegar, H., & Ryu, J.-Y. (2015). A broadband low noise amplifier with built-in linearizer in 0.13-µm CMOS process. Microelectronics Journal, 46, 698–705. https://doi.org/10.1016/j.mejo.2015.05.006.

    Article  Google Scholar 

  16. Tarighat, A. P., & Yargholi, M. (2016). A CMOS low noise amplifier with employing noise cancellation and modified derivative superposition technique. Microelectronics Journal, 54, 116–125. https://doi.org/10.1016/j.mejo.2016.05.015.

    Article  Google Scholar 

  17. Rastegar, H., & Hakimi, A. (2013). A high linearity CMOS low noise amplifier for 3.66 GHz applications using current-reused topology. Microelectronics Journal, 44, 301–306. https://doi.org/10.1016/j.mejo.2013.01.013.

    Article  Google Scholar 

  18. Chen, W.-H., Liu, G., Zdravko, B., & Niknejad, A. M. (2008). A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE Journal of Solid-State Circuits, 43, 1164–1176. https://doi.org/10.1109/JSSC.2008.920335.

    Article  Google Scholar 

  19. Blaakmeer, S. C., Klumperink, E. A. M., Leenaerts, D. M. W., & Nauta, B. (2008). Wideband Balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits, 43, 1341–1350. https://doi.org/10.1109/JSSC.2008.922736.

    Article  Google Scholar 

  20. Wang, X., Sturm, J., Yan, N., Tan, X., & Min, H. (2012). 0.6–3-GHz wideband receiver RF front-end with a feedforward noise and distortion cancellation resistive-feedback LNA. IEEE Transactions on Microwave Theory and Techniques, 60, 387–392. https://doi.org/10.1109/tmtt.2011.2176138.

    Article  Google Scholar 

  21. Khurram, M., & Rezaul Hasan, S. M. (2013). A full-band UWB common-gate band-pass noise matched g m -boosted series peaked CMOS differential LNA. Analog Integrated Circuits and Signal Processing, 76, 47–60. https://doi.org/10.1007/s10470-013-0085-z.

    Article  Google Scholar 

  22. Singh, V., Arya, S. K., & Kumar, M. (2018). Gm-boosted current-reuse inductive-peaking common source LNA for 3.1–10.6 GHz UWB wireless applications in 32 nm CMOS. Analog Integrated Circuits and Signal Processing, 97, 351–363. https://doi.org/10.1007/s10470-018-1290-6.

    Article  Google Scholar 

  23. Singh, J., & Pandey, S. (2015). A 0.6 V, low-power and high-gain ultra-wideband low-noise amplifier with forward-body-bias technique for low-voltage operations. IET Microwaves, Antennas and Propagation, 9, 728–734. https://doi.org/10.1049/iet-map.2014.0581.

    Article  Google Scholar 

  24. Tsai, M.-H., & Hsu, S. S. H. (2011). A 24 GHz low-noise amplifier using rf junction varactors for noise optimization and CDM ESD protection in 90 nm CMOS. IEEE Microwave and Wireless Components Letters, 21, 374–376. https://doi.org/10.1109/LMWC.2011.2152387.

    Article  Google Scholar 

  25. Hsiao, Yuan-Wen, & Ker, Ming-Dou. (2009). A 5-GHz differential low-noise amplifier with high pin-to-pin ESD robustness in a 130-nm CMOS process. IEEE Transactions on Microwave Theory and Techniques, 57, 1044–1053. https://doi.org/10.1109/TMTT.2009.2017247.

    Article  Google Scholar 

  26. Chang, T., Chen, J., Rigge, L., & Lin, J. (2008). A packaged and ESD-protected inductorless 0.1–8 GHz wideband CMOS LNA. IEEE Microwave and Wireless Components Letters, 18, 416–418. https://doi.org/10.1109/lmwc.2008.922677.

    Article  Google Scholar 

  27. Razavi, B. (2011). RF microelectronics (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  28. Agrawal, A., & Kshetrimayum, R. S. (2015). Analysis of UWB communication over IEEE 802.15.3a channel by superseding lognormal shadowing by Mixture of Gamma distributions. AEÜ - International Journal of Electronics and Communications, 69, 1795–1799. https://doi.org/10.1016/j.aeue.2015.09.003.

    Article  Google Scholar 

  29. Pandey, S., Gawande, T., Pathak, A., & Kondekar, P. N. (2018). A 0.9-V, 4.4-mW CMOS LNA with wideband input match and high gain for UWB applications. International Journal of Electronics Letters, 6, 329–337. https://doi.org/10.1080/21681724.2017.1378373.

    Article  Google Scholar 

  30. Pandey, A., Pusalkar, M., Dwaramwar, P. (2016). A 0.1–3 GHz, 90 nm CMOS wideband LNA employing positive negative feedback for gain, NF and linearity improvement. In 2016 international conference on advanced communication control and computing technologies, IEEE (pp. 147–152). https://doi.org/10.1109/icaccct.2016.7831618.

  31. Khavari, A.F., Mafinezhad, K. (2018). A New UWB LNA with 15 dB Gain in 90 nm CMOS with current reuse topology. In Iranian conference electrical engineering (ICEE), IEEE (pp. 184–189). https://doi.org/10.1109/icee.2018.8472556.

  32. Arshad, S., Ramzan, R., Muhammad, K., & Wahab, Q. (2015). A sub-10mW, noise cancelling, wideband LNA for UWB applications. AEÜ - International Journal of Electronics and Communications, 69, 109–118. https://doi.org/10.1016/j.aeue.2014.08.002.

    Article  Google Scholar 

  33. Akbar, F., Atarodi, M., & Saeedi, S. (2015). Design method for a reconfigurable CMOS LNA with input tuning and active balun. AEÜ - International Journal of Electronics and Communications, 69, 424–431. https://doi.org/10.1016/j.aeue.2014.10.019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafati, M., Qasemi, S.R. & Amiri, P. A \({\mathbf{g}}_{{\mathbf{m}}}\)-boosted highly linear fully differential 3–5 GHz UWB LNA employing noise and distortion canceling technique. Analog Integr Circ Sig Process 101, 201–218 (2019). https://doi.org/10.1007/s10470-019-01524-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01524-9

Keywords

Navigation