Skip to main content
Log in

A nanoscale gate overlap tunnel FET (GOTFET) based improved double tail dynamic comparator for ultra-low-power VLSI applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces an innovative Gate Overlap Tunnel FET (GOTFET) device which is an advanced TFET engineered to yield double the on current \(I_{\mathrm{on}}\), while the off current \(I_{\mathrm{off}}\) remains an order lower than the analogous MOSFET having same width at the same technology node. A conventional Dynamic Comparator designed using the proposed Complementary GOTFET (CGOT) paradigm exhibits 93 ps (25%) lower delay than similar CMOS designs and consumes merely 1.11 pW (99% lower than CMOS) of static power. The overall power delay product (PDP) in the CGOT comparator design has been shown to be only 0.5% of the PDP of a conventional CMOS comparator. Although the advantages of higher \(I_{\mathrm{on}}\) are manifold, however, it increases dynamic power as well. So this paper goes beyond device-level improvisation and proposes for the first time, a novel improved comparator circuit designed using the CGOT paradigm which further reduces the total power by an additional 44.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Manikandan, A., Ajayan, J., Kavin, C., Karthick, S., & Nirmal, D. (2015). A comparative study of high performance dynamic comparators using strained silicon technology. In 2015 2nd international conference on electronics and communication systems (ICECS) (pp. 130–135). https://doi.org/10.1109/ECS.2015.7124794

  2. Vaijayanthi, M., & Vivek, K. (2015). Analysis of dynamic comparators in ultra-low supply voltages for high speed ADCs. In 2015 international conference on innovations in information, embedded and communication systems (ICIIECS) (pp. 1–6). https://doi.org/10.1109/ICIIECS.2015.7193107

  3. Kingra, S. K., & Gupta, S. (2016). Low-power and high performance clocked regenerative comparator at 90 nm CMOS technology. In 2016 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1228–1232). https://doi.org/10.1109/ICACCI.2016.7732213

  4. Babayan-Mashhadi, S., & Lotfi, R. (2014). Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 343. https://doi.org/10.1109/TVLSI.2013.2241799.

    Article  Google Scholar 

  5. Puvaneswari, G., & Ranjini, R. (2016). Analysis of energy efficient double tail regenerative comparators. In 2016 international conference on circuit, power and computing technologies (ICCPCT) (pp. 1–5). https://doi.org/10.1109/ICCPCT.2016.7530219

  6. Salehi, M. R., Abiri, E., Hosseini, S. E., & Dorostkar, B. (2013). Design of tunneling field-effect transistor (TFET) with AlxGa1-xAS/InxGa1-xAs hetero-junction. In 2013 21st Iranian conference on electrical engineering (ICEE) (pp. 1–3). https://doi.org/10.1109/IranianCEE.2013.6599777

  7. Wang, W., Wang, P. F., Zhang, C. M., Lin, X., Liu, X. Y., Sun, Q. Q., et al. (2014). Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Transactions on Electron Devices, 61(1), 193. https://doi.org/10.1109/TED.2013.2289075.

    Article  Google Scholar 

  8. Vishnoi, R., & Kumar, M. J. (2015). An accurate compact analytical model for the drain current of a TFET from subthreshold to strong inversion. IEEE Transactions on Electron Devices, 62(2), 478. https://doi.org/10.1109/TED.2014.2381560.

    Article  Google Scholar 

  9. Pandey, P., Vishnoi, R., & Kumar, M. J. (2014). Drain current model for SOI TFET considering source and drain side tunneling. In 2014 IEEE 2nd international conference on emerging electronics (ICEE) (pp. 1–5). https://doi.org/10.1109/ICEmElec.2014.7151203

  10. Baravelli, E., Gnani, E., Gnudi, A., Reggiani, S., & Baccarani, G. (2014). TFET inverters with n-/p-devices on the same technology platform for low-voltage/low-power applications. IEEE Transactions on Electron Devices, 61(2), 473. https://doi.org/10.1109/TED.2013.2294792.

    Article  Google Scholar 

  11. Schulte-Braucks, C., Pandey, R., Sajjad, R. N., Barth, M., Ghosh, R. K., Grisafe, B., et al. (2017). Fabrication, characterization, and analysis of Ge/GeSn heterojunction p-type tunnel transistors. IEEE Transactions on Electron Devices, 64(10), 4354. https://doi.org/10.1109/TED.2017.2742957.

    Article  Google Scholar 

  12. Ilatikhameneh, H., Tan, Y., Novakovic, B., Klimeck, G., Rahman, R., & Appenzeller, J. (2015). Tunnel field-effect transistors in 2-D transition metal dichalcogenide materials. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 1, 12. https://doi.org/10.1109/JXCDC.2015.2423096.

    Article  Google Scholar 

  13. Ajay, G., Gupta, M., Narang, R., & Saxena, M. (2015). Analysis of cylindrical gate junctionless tunnel field effect transistor (CG-JL-TFET), In 2015 annual IEEE India conference (INDICON) (pp. 1–5). https://doi.org/10.1109/INDICON.2015.7443557

  14. Kumar, S., Goel, E., Singh, K., Singh, B., Singh, P. K., Baral, K., et al. (2017). 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a SiO2/HfO2 stacked gate-oxide structure. IEEE Transactions on Electron Devices, 64(3), 960. https://doi.org/10.1109/TED.2017.2656630.

    Article  Google Scholar 

  15. Kao, K., Verhulst, A. S., Vandenberghe, W. G., Soree, B., Magnus, W., Leonelli, D., et al. (2012). Optimization of gate-on-source-only tunnel FETs with counter-doped pockets. IEEE Transactions on Electron Devices, 59(8), 2070. https://doi.org/10.1109/TED.2012.2200489.

    Article  Google Scholar 

  16. Chander, S., Bhowmick, B., & Baishya, S. (2015). Heterojunction fully depleted SOI-TFET with oxide/source overlap. Superlattices and Microstructures, 86, 43. https://doi.org/10.1016/j.spmi.2015.07.030.

    Article  Google Scholar 

  17. Settino, F., Lanuzza, M., Strangio, S., Crupi, F., Palestri, P., Esseni, D., et al. (2017). Understanding the potential and limitations of tunnel FETs for low-voltage analog/mixed-signalcircuits. IEEE Transactions on Electron Devices, 64(6), 2736. https://doi.org/10.1109/TED.2017.2689746.

    Article  Google Scholar 

  18. Shrivastava, M. (2017). Drain extended tunnel FETNovel power transistor for RF and switching applications. IEEE Transactions on Electron Devices, 64(2), 481. https://doi.org/10.1109/TED.2016.2636920.

    Article  Google Scholar 

  19. Li, W., & Woo, J. C. S. (2018). Optimization and scaling of Ge-pocket TFET. IEEE Transactions on Electron Devices, 65(12), 5289. https://doi.org/10.1109/TED.2018.2874047.

    Article  Google Scholar 

  20. Blaeser, S., Glass, S., Schulte-Braucks, C., Narimani, K., Driesch, Nvd, Wirths, S., et al. (2016). Line tunneling dominating charge transport in SiGe/Si heterostructure TFETs. IEEE Transactions on Electron Devices, 63(11), 4173. https://doi.org/10.1109/TED.2016.2608383.

    Article  Google Scholar 

  21. Chau, R., Datta, S., Doczy, M., Kavalieros, J., & Metz, M. (2003). Gate dielectric scaling for high-performance CMOS: from SiO2 to high-K. In Extended abstracts of international workshop on gate insulator (IEEE Cat. No.03EX765) (pp. 124–126). https://doi.org/10.1109/IWGI.2003.159198

  22. Fahad, M., Zhao, Z., Srivastava, A., & Peng, L. (2016). Modeling of graphene nanoribbon tunnel field effect transistor in Verilog-A for digital circuit design. In 2016 IEEE international symposium on nanoelectronic and information systems (iNIS) (pp. 1–5). https://doi.org/10.1109/iNIS.2016.013

  23. Wang, J., Xu, N., Choi, W., Lee, K.-H. & Park, Y. (2015). A generic approach for capturing process variations in lookup-table-based FET models. In IEEE (pp. 309–312). https://doi.org/10.1109/SISPAD.2015.7292321. Retrieved June 25, 2019 from http://ieeexplore.ieee.org/document/7292321/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Vidhyadharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhyadharan, S., Yadav, R., Simhadri, H. et al. A nanoscale gate overlap tunnel FET (GOTFET) based improved double tail dynamic comparator for ultra-low-power VLSI applications. Analog Integr Circ Sig Process 101, 109–117 (2019). https://doi.org/10.1007/s10470-019-01487-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01487-x

Keywords

Navigation