Skip to main content
Log in

“A speech recognizer” a tool to recognize the high clarity speech signal based on existing speech using ISCA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this research a new way introduced for solving the underdetermined blind speech signal separation problem when the number of observation is less than the sources for which the ICA is no longer applicable, which enhance the time complexity for separation of signal. To resolve that, Improved Sparse Component Analysis (ISCA) is introduced to exploit the sparse nature of TF domain, which adopt a two-step processing that contains mixing matrix estimation followed by separation of source. This ISCA is based on fuzzy c-means with Particle swarm optimization (PSO) algorithm for mixed matrix Estimation. In our work PSO is used to separate the accurate voice signal from the random mixed signal by finding the best optima solution in the cluster part. Then the source signal separation is carried out based on the shortest path. These initial processing is done and verified by Mat lab and hardware description language is generated using HDL coder and it is synthesized using Xilinx ISE. The final result illustrates that the proposed system has an improved performance in terms of SNR, Efficiency and Accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Dupont, S., & Luettin, J. (2000). Audio-visual speech modeling for continuous speech recognition. IEEE Transactions on Multimedia, 2(3), 141–151.

    Article  Google Scholar 

  2. Liutkus, A., Badeau, R., & Richard, G. (2011). Gaussian processes for underdetermined source separation. IEEE Transactions on Signal Processing, 59(7), 3155–3167.

    Article  MathSciNet  MATH  Google Scholar 

  3. Vincent, E., Araki, S., Theis, F., Nolte, G., Bofill, P., Sawada, H., et al. (2012). The signal separation evaluation Campaign (2007–2010): Achievements and remaining challenges. Signal Processing Journal, 92(8), 1928–1936.

    Article  Google Scholar 

  4. Kokkinakis, K., & Asoke Nandi, K. (2006). Multichannel blind deconvolution for source separation in convolutive mixtures of speech. IEEE Transactions on Audio, Speech and Language Processing, 14(1), 200–212.

    Article  Google Scholar 

  5. Daniel, W. E., Schobben, C., & Sommen, P. (2002). A frequency domain blind signal separation method based on decorrelation. IEEE Transactions on Signal Processing, 50(8), 1855–1865.

    Article  Google Scholar 

  6. Koldovsky, Z., & Tichavsky, P. (2011). Time-domain blind separation of audio sources on the basis of a complete ICA decomposition of an observation space. IEEE Transactions on Audio, Speech and Language Processing, 19(2), 406–416.

    Article  Google Scholar 

  7. Yilmaz, O., & Rickard, S. (2004). Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing, 52(7), 1830–1847.

    Article  MathSciNet  MATH  Google Scholar 

  8. Gribonval, R., Benaroya, L., Vincent, E., & Févotte, C. (2003). Proposals for performance measurement in source separation. In Proceedings of 4th international symposium on independent component analysis and blind signal separation (ICA2003) (pp. 763–768).

  9. Lin, Q.-H., Yin, F.-L., Mei, T.-M., & Liang, H. (2006). A blind source separation based method for speech encryption. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(6), 1320–1328.

    Article  MathSciNet  MATH  Google Scholar 

  10. Rojas, F., Puntonet, C. G., Górriz, J. M., & Valenzuela, O. (2005). Assessing the performance of several fitness functions in a genetic algorithm for nonlinear separation of sources. Advances in natural computation (pp. 863–872). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  11. André Takahata, K., Everton Nadalin, Z., Ferrari, R., Duarte, L. T., Suyama, R., Renato Lopes, R., et al. (2012). Unsupervised processing of geophysical signals: A review of some key aspects of blind de convolution and blind source separation. IEEE Signal Processing Magazine, 29(4), 27–35.

    Article  Google Scholar 

  12. Fuentes, B., Badeau, R., & Richard, G. (2012). Blind harmonic adaptive decomposition applied to supervised source separation. In Proceedings of the IEEE 20th European signal processing conference (EUSIPCO) (pp. 2654–2658).

  13. Diago Sorianoa, C., Suyamab, R., & Attux, R. (2011). Blind extraction of chaotic sources from mixtures with stochastic signals based on recurrence quantification analysis. Conference on Digital Signal Processing, 21, 417–426.

    Article  Google Scholar 

  14. Virtanen, T. (2007). Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Transactions on Audio, Speech and Language Processing, 15(3), 1066–1074.

    Article  Google Scholar 

  15. Sawada, H., Mukai, R., Araki, S., & Makino, S. (2004). A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio Processing, 12(5), 530–538.

    Article  Google Scholar 

  16. Araki, S., Sawada, H., Mukai, R., & Makino, S. (2007). Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors. Signal Processing, 87(8), 1833–1847.

    Article  MATH  Google Scholar 

  17. Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using sparse representations. Signal Processing, 81(11), 2353–2362.

    Article  MATH  Google Scholar 

  18. Abrard, F., & Deville, Y. (2005). A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Processing, 85(7), 1389–1403.

    Article  MATH  Google Scholar 

  19. Puigt, M., & Deville, Y. (2005). Time–frequency ratio-based blind separation methods for attenuated and time-delayed sources. Mechanical Systems and Signal Processing, 19(6), 1348–1379.

    Article  Google Scholar 

  20. Reju, V. G., Koh, S. N., & Soon, I. Y. (2009). An algorithm for mixing estimation in instantaneous blind source separation. Signal Processing, 89(9), 1762–1773.

    Article  MATH  Google Scholar 

  21. Sha, Z.-C., Huang, Z.-T., Zhou, Yi-Yu., & Wang, F.-H. (2013). Frequency-hopping signals sorting based on underdetermined blind source separation. IET Communications, 7(14), 1456–1464.

    Article  Google Scholar 

  22. Xie, S., Yang, L., Yang, J.-M., Zhou, G., & Xiang, Y. (2012). Time-Frequency Approach to Underdetermined Blind Source Separation. IEEE Transactions on Neural Networks and Learning Systems, 23(2), 306–316.

    Article  Google Scholar 

  23. Bao, G., Zhongfu Ye, X., & Zhou, Y. (2013). A compressed sensing approach to blind separation of speech mixture based on a two-layer sparsity model. IEEE Transactions on Audio, Speech and Language Processing, 21(5), 899–906.

    Article  Google Scholar 

  24. Alshabrawy, O. S. & Hassanien, A. E. (2014). Underdetermined blind separation of mixtures of an unknown number of sources with additive white and pink noises. In Proceedings of the Fifth international conference on innovations in bio-inspired computing and applications IBICA 2014 (pp. 241–250). Cham: Springer.

  25. Zhang, L., Yang, J., Kaiwang, L., & Zhang, Q. (2014). Modified subspace method based on convex model for underdetermined blind speech separation. IEEE Transactions on Consumer Electronics, 60(2), 225–232.

    Article  Google Scholar 

  26. Abrard, F., & Deville, Y. (2005). A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process, 85(7), 1389–1403.

    Article  MATH  Google Scholar 

  27. Puigt, M., & Deville, Y. (2005). Time–frequency ratio-based blind separation methods for attenuated and time-delayed sources. Mechanical Systems and Signal Processing, 19(6), 1348–1379.

    Article  Google Scholar 

  28. Araki, S., Sawada H. & Makino, S. (2007). Blind speech separation in a meeting situation with maximum SNR beamformers. In IEEE international conference on acoustics, speech and signal processing, 2007. ICASSP 2007 (pp. 1–41).

  29. Pavlidi, D., Griffin, A., Puigt, M., & Mouchtaris, A. (2013). Real-time multiple sound source localization and counting using a circular microphone array. IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 21(10), 2193–2206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Navaneetha Velammal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velammal, M.N., Kumar, P.N. “A speech recognizer” a tool to recognize the high clarity speech signal based on existing speech using ISCA. Analog Integr Circ Sig Process 98, 41–58 (2019). https://doi.org/10.1007/s10470-018-1275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1275-5

Keywords

Navigation