Skip to main content
Log in

Design of sampled analog wavelet processor architecture for cochlear implant application

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design of sampled analog wavelet processor architecture for cochlear implant application using discrete Haar wavelet transform. Basic element of sampled analog wavelet processor architecture is operational amplifier based switched capacitor integrator circuit. This architecture distributes input signal frequencies into different predefined frequency band and based on cochlear sensitivity region for different frequencies by using arbitrary tree structure. The presented architecture is beneficial in terms of processing time of input signal, area and complexity by avoiding quantization and encoding process part of data converter circuits. Simulation results for this architecture is carried out with CMOS 90 nm technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Queen Elizabeth Hospital Birmingham “Surgical solutions to hearing loss” online : http://www.uhb.nhs.uk/surgical-solutions-to-hearing-loss.htm.

  2. Loizou, Philipos C. (2006). Speech processing in vocoder-centric cochlear implants. Basel: Adv Otorhinolaryngol.

    Book  Google Scholar 

  3. Mal, A. K., & Dhar, A. S. (2003). Analog sampled data architecture for discrete Hartley transform, TENCON 2003/1038.

  4. Mal, A. K., & Dhar, A. S. (2003). Analog sampled data architecture for discrete cosine transform, 0-7803-7889-X/03iS 17.000©2003 IEEE.

  5. Mal, A. K., & Dhar, A. S. (2003). Analog sampled data architecture]?or discrete Hartley transform for prime N, 0-7803-8163-7/03/$17.00 0 ©2003 IEEE.

  6. Mal, A. K., & Basu, A. (2004). A generalized analog architecture for DCT, DST and its inverse, 0-7803-8484-9/04/$20.00 © 2004 IEEE.

  7. Mal, A.K., Basu, A, & Dhar, A.S. (2004). Sampled analog architecture for DCT and DST, 0-7803-8251-x/04/$17.00 © 2004 IEEE.

  8. Thakkar, C., & Dhar, A. S. (2006). Sampled analog architecture for 2-D DCT”, 0-7803-9390-2/06/$20.00 ©)2006 IEEE.

  9. Shi, G., Liu, W., Zhang, L., & Li, F. (2009). An efficient folded architecture for lifting-based discrete wavelet transform, 1549–7747/$25.00 © 2009 IEEE

  10. Al-Sulaifanie, A. K., Ahmadi, A., Zwolinski, M. (2010) .Very large scale integration architecture for integer wavelet transform, & The Institution of Engineering and Technology 2010.

  11. Farahani, M. A., Mirzaei, S., & Farahani, H. A. (2011). Implementation of a reconfigurable architecture of discrete wavelet packet transform with three types of multipliers on FPGA, IEEE CCECE 2011—001459.

  12. Romero-Troncoso, R. J., Pena-Anaya, M., Cabal-Yepez, E., Garcia-Perez, A., & Roque, Osornio-Rios, A. (2012). Reconfigurable SoC-based smart sensor for wavelet and wavelet packet analysis, 0018-9456/$31.00 © 2012 IEEE.

  13. Darji, A., Agrawal, S., Oza, A., Sinha, V., Verma, A., Merchant, S. N., & Chandorkar, A. N. (2014). Dual-scan parallel flipping architecture for a lifting-based 2-D discrete wavelet transform, pp. 1549–7747 © 2014 IEEE.

  14. Garcia, D., Mansour, M., & Ali, M. (2013). A flexible hardware architecture for wavelet packet transform with arbitrary tree structure, pp. 1549–7747 © 2013 IEEE.

  15. Trenas, M. A., Ldpez, J., Zapata, E. L., & Arguello, F.(2000). An architecture for wavelet-packet based speech enhancement for hearing aids, 0-7803-6293-4/00/$10.00 02000 IEEE.

  16. Wu, X., Li, Y., & Chen, H. (1999). Programmable wavelet packet transform processor, ELECTRONICS LETTERS 18th March 1999.

  17. Mei-hua, X., Zhang-jin, C., Feng, R., Yu-lan, C. (2006). Architecture research and VLSI implementation for discrete wavelet packet transform, 1-4244-0489-4/06/$20.00 ©2006 IEEE.

  18. Desmouliers, C., Oruklu, E., & Saniie, J. (2011). Discrete wavelet transform realisation using run-time reconfiguration of field programmable gate array (FPGA)s, & The Institution of Engineering and Technology 2011.

  19. Polikar, R. “The engineer’s ultimate guide to wavelet analysis” Online : https://ccma.sandford.edu.

  20. Johns, D. & Martin, K. (1997).Analog integrated circuit design “, John Wiely & Sons.

  21. Reddy, A. S., & Dhar, A. S. (2012). A discrete time continuous level VLSI architecture in current mode to implement discrete Haar wavelet transform. Analog Integrated Circuits and Signal Processing, 73, 353–362. doi:10.1007/s10470-012-9910-z.

    Article  Google Scholar 

  22. Reddy, A. S., & Dhar, A. S. (2012). Sampled analog VLSI architecture using OP-AMP based switched capacitor circuits to implement discrete Haar wavelet transform”, 978-1-4673-1627-9/12/$31.00 ©2012 IEEE.

  23. Reddy, A. S., & Dhar, A. S. (2012). Sampled analog VLSI architecture to implement discrete Daubechies wavelet transform, 978-1-4673-1627-9/12/$31.00 ©2012 IEEE.

  24. Kallel, F., Laboissiere, R., Hamida, A. B., Berger-Vachon, C. (2013). Influence of a shift in frequency distribution and analysis rate on phoneme intelligibility in noisy environments for simulated bilateral cochlear implants, 0003-682X/$ - see front matter _ 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.apacoust.2012.05.014.

  25. Loizon P. C., An overview of signal processing strategies for convering sound into Electrical signal in cochlear implants.

  26. Shannon, R. V., Fu, Q. J., Galvin, J., & Friesen, L. (2004). Speech perception with cochlear implants. Newyork: Springer.

    Book  Google Scholar 

  27. Abel, C., Park, J., Ismail, M., Lohiser, B., Justice, S., Bibyk, S., & Fiez, T. (June 1994) A switched-current silicon cochlea. In Proceedings of IEEE International Conference on Neural Networks (ICNN) (pp. 1842–1847), Orlando, Florida.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush M. Chaniyara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaniyara, P.M., Srivastava, P.K., Suresha, B. et al. Design of sampled analog wavelet processor architecture for cochlear implant application. Analog Integr Circ Sig Process 86, 171–180 (2016). https://doi.org/10.1007/s10470-015-0642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0642-8

Keywords

Navigation