Skip to main content
Log in

1.5-V CMOS exponential current generator

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A new low-voltage CMOS exponential current generator is proposed in this work. MOS transistors in weak-inversion region and a master–slave technique for the temperature compensation were used. The circuit was fabricated with standard CMOS 0.35 μm process using a single supply voltage of 1.5 V. Experimental results validate the theoretical analysis and verify the effectiveness of the proposed structure. A 40 dB range linearly in dB controlled output current with less than 1.5 dB linearity error was achieved. The structure features ±1 and ±3 dB deviations for ±10% supply voltage and 80°C temperature variations, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu, S., & Ye, Y. (2009). Design of CMOS variable gain amplifier for DTV tuners. In: Proceedings of the 2009 international conference on networks security, wireless communications and trusted computing, NSWCTC ‘09 (Vol. 2, pp. 10–12), Wuhan, China, 2009.

  2. Li, X. Q., Dong, L. M., & Peng, X. H. (2010). A 20 db, 250 M CMOS variable gain amplifier for GPS receiver. In: Proceedings of the 2010 Asia Pacific conference on postgraduate research in microelectronics and electronics (PrimeAsia) (pp. 267–270), Shanghai, China, 2010.

  3. Jeon, O., Fox, R. M., & Myers, B. A. (2006). Analog AGC circuitry for a CMOS WLAN receiver. IEEE Journal of Solid-State Circuits, 4(10), 2291–2300.

    Article  Google Scholar 

  4. Coffing, D., Main, E., Randolf, M., & Szklarz, G. (2002). A variable gain amplifier with 50-dB control range for 900-MHz applications. IEEE Journal of Solid-State Circuits, 37(9), 1169–1175.

    Article  Google Scholar 

  5. Khoury, J. M. (1998). On the design of constant settling time AGC circuits. IEEE Transactions on Circuits and Systems II, Analog and Digital Signal Processing, 45(3), 283–294.

    Article  Google Scholar 

  6. Liu, W., & Liu, S.-I. (2003). CMOS exponential function generator. Electronics Letters, 39(1), 1–2.

    Article  Google Scholar 

  7. Carrara, F., Filoramo, O., & Palmisano, G. (2004). High-dynamic-range variable gain amplifier with temperature compensation and linear-in-dB gain control. Electronics Letters, 40(6), 363–364.

    Article  Google Scholar 

  8. Lei, Q., Chen, Z., Shi, Y., & Xu, Q. (2008). A low-power CMOS VGA with 60-dB linearly controlled gain range for GPS application. In: 9th international conference on solid-state and integrated-circuit technology, 2008. ICSICT 2008 (pp. 1669–1672).

  9. Vlassis, S. (2001). CMOS current-mode pseudo-exponential function circuit. Electronics Letters, 37(8), 471–472.

    Article  Google Scholar 

  10. Pan, T.-W., & Abidi, A. A. (1989). A 50 dB variable gain amplifier using parasitic bipolar transistors in CMOS. IEEE Journal of Solid-State Circuits, 24(4), 951–961.

    Article  Google Scholar 

  11. Yamaji, T., Kanou, N., & Itakura, T. (2002). A Temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of Solid-State Circuits, 37(5), 353–358.

    Article  Google Scholar 

  12. Aggarwal, S., Khosrowbeygi, A., & Daanen, A. (2003). A single stage variable gain amplifier with 70-dB dynamic range for CDMA2000 transmit applications. IEEE Journal of Solid-State Circuits, 38(6), 911–917.

    Article  Google Scholar 

  13. Lee, H. D., Kim, M.-G., Kim, C.-H., & Hong, S. (2008). A temperature-independent Transmitter IC for 5.8 GHz DSRC applications. IEEE Transactions on Circuits and Systems I, 55(6), 1733–1741.

    Article  MathSciNet  Google Scholar 

  14. Yun, T. H., Yin, L., Huang, C., Wu, J. H., & Shi, L. X. (2007). A low-distortion CMOS IF VGA with linear-in-dB control and temperature compensation. Analog Integrated Circuits and Signal Processing, 50(3), 185–194.

    Article  Google Scholar 

  15. I. Tsividis, Y. P. (1987). Operation and modeling of the MOS transistor. New York: McGraw-Hill.

    Google Scholar 

  16. Kao, C. H., Tseng, C. C., & Hsieh, C. S. (2005). A low voltage exponential function converter. IEE Proceedings of Circuits, Devices and Systems, 152(5), 485–487.

    Article  Google Scholar 

  17. Liu, W., & Liu, S. I. (2004). Low voltage and low power CMOS exponential-control variable-gain amplifier. IEICE Transactions on Fundamentals, E87-A(4), 952–954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassileios Kalenteridis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalenteridis, V., Vlassis, S. & Siskos, S. 1.5-V CMOS exponential current generator. Analog Integr Circ Sig Process 72, 333–341 (2012). https://doi.org/10.1007/s10470-012-9836-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9836-5

Keywords

Navigation