Skip to main content
Log in

The blocker challenge when implementing software defined radio receiver RF frontends

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Key blocker requirements of software defined radio receivers are identified from first principles. Three challenges are derived from these requirements, the need for passive filter banks or tunable passive filters, a very highly linear RF front-end and a high performance analog-to-digital converter. Each of these challenges is analyzed regarding possible solutions in the context of state-of-the art technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kenington, P. B. (2005). RF and baseband techniques for software defined radio, Artech house.

  2. Mitola, J. (1995). The software radio architecture. IEEE Communications Magazine, 33(5), 26–38.

    Article  Google Scholar 

  3. Brandolini, M., Rossi, P., Manstretta, D., & Svelto, F. (2005). Toward multistandard mobile terminals—fully integrated receivers requirements and architectures. IEEE Transactions on Microwave Theory and Techniques, 53(3), 1026–1038.

    Article  Google Scholar 

  4. Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M. H., Lee, M., Mikhemar, M., et al. (2006). An 800-MHz-6-GHz software-defined wireless receiver in 90-nm CMOS. IEEE Journal of Solid-State Circuits, 41(12), 2860–2876.

    Article  Google Scholar 

  5. Perlman, B., Laskar, J., & Lim, K. (2008). Fine-tuning commercial and military radio design. IEEE Microwave Magazine, 9(4), 95–106.

    Article  Google Scholar 

  6. Cabric, D., O’Donnell, I. D., Chen, M. S.-W., & Brodersen, R. W. (2006). Spectrum sharing radios. IEEE Circuits and Systems Magazine, Second quarter 2006.

  7. Nilsson, A., Tell, E., & Liu, D. (2009). An 11 mm2, 70 mW fully programmable baseband processor for mobile WiMAX and DVB-T/H in 0.12 μm CMOS. IEEE Journal of Solid-State Circuits, 44(1), 90–97.

    Article  Google Scholar 

  8. Jakonis, D., Folkesson, K., Dabrowski, J., Eriksson, P., & Svensson, C. (2005). A 2.4-GHz RF sampling receiver frontend in 0.18-μm CMOS. IEEE Journal of Solid-State Circuits, 40(6), 1265–1277.

    Article  Google Scholar 

  9. Roy, M. K., & Richter, J. (2006). Tunable ferroelectric filters for software defined tactical radios, ISAF’06. In 15th IEEE international symposium on the application of ferroelectrics, pp. 348–351, August 2006.

  10. Joshi, H., Sigmarsson, H. H., Peroulis, D., & Chappell, W. J. (2007). Highly loaded evanescent cavities for widely tunable high-Q filters. In IEEE MTT-S international microwave symposium, pp. 2133–2136, June 2007.

  11. Mehr, I. (2005). Integrated TV tuner design for multi-standard terrestrial reception. In Proceedings of the IEEE radio frequency integrated circuits symposium 2005, pp. 75–78, June 2005.

  12. Wellens, M., Wu, J., & Mähönen, P. (2007). Evaluation of spectrum occupancy in indoor and outdoor scenario in the context of cognitive radio. In Proceedings of CROWNCOM, Orlando, August 2007.

  13. Ellingson, S. W. (2005). Spectral occupancy at VHF: Implications for frequency-agile cognitive radios. In Proceedings of IEEE vehicular technology conference, pp. 1379–1382, September 2005.

  14. Blake, R. (2002). Electronic communication systems (2nd ed.). Chapter 15, Delmar.

  15. Fanton, M. D. (2006). Antenna pattern and coverage optimization (Vol. 6, pp. 15–17). ERI technical series (Electronic Research Inc.), April 2006.

  16. Beckman, C., & Lindmark, B. (2007). The evolution of base station antennas for mobile communications. In International conference on electromagnetics in advanced applications 2007, pp. 85–92, September 2007.

  17. Yoon, H.-K., & Ismail, M. (2004). A CMOS multi-standard receiver architecture for ISM and UNII band applications. In Proceedings of the 2004 international symposium on circuits and systems, Vol. 4, pp. IV–265–8, May 2004.

  18. Snodgrass, T. Private communication.

  19. Sundström, T., Murmann, B., & Svensson, C. (2009). Power dissipation bounds for high-speed nyquist digital-to-analog converters. IEEE Transactions Circuits and Systems I, 56(3), 509–518.

    Article  Google Scholar 

  20. Dussopt, L., & Rebeiz, G. M. (2003). Intermodulation distortion and power handling in RF MEMS switches, varactors, and tunable filters. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1247–1256.

    Article  Google Scholar 

  21. Darabi, H. (2007). A blocker filtering technique for SAW-less wireless receivers. IEEE Journal of Solid-State Circuits, 42(12), 2766–2773.

    Article  Google Scholar 

  22. Kannangara, S., & Faulkner, M. (2003). Adaptive duplexer for multiband transceiver. In Proceedings radio and wireless conference, 2003, pp. 381–384, August 2003.

  23. Blake, R. (2002). Electronic communication systems (2nd ed.). Chapter 1, Delmar 2002.

  24. Blad, A., Svensson, C., Johansson, H., & Andersson, S. (2006). An RF sampling radio frontend based on ΣΔ-conversion. In 24th norchip conference, 2006, pp. 133–136, November 2006.

  25. Lerstaveesin, S., Gupta, M., Kang, D., & Song, B.-S. (2008). A 48–860 MHz CMOS low-IF direct-conversion DTV tuner. IEEE Journal of Solid-State Circuits, 43(9), 2013–2024.

    Article  Google Scholar 

  26. Boric-Lubecke, O., Lin, J., Verma, A., Lo, I., & Lubecke, V. M. (2008). Multiband 0.25-μm CMOS base station chips for indirect and direct conversion receivers. IEEE Transactions on Circuits and Systems I, 55(8), 2106–2115.

    Google Scholar 

  27. Ahsan, N., Svensson, C., & Dabrowski, J. (2008). Highly linear wideband low power current mode LNA. In International conference on signals and electronic systems 2008, pp. 73–76, September 2008.

  28. Fong, K. L., Hull, C. D., & Meyer, R. G. (1997). A class AB monolithic mixer for 900 MHz applications. IEEE Journal of Solid-State Circuits, 32(8), 1166–1172.

    Article  Google Scholar 

  29. Kan, T. K.-K., Mak, K.-C., Ma, D., & Luong, H. C. (2000). A 2-V 900-MHz CMOS mixer for GSM receivers. In IEEE international symposium on circuits and systems I, pp. I-327–I-330, May 2000.

  30. Maas, S. A. (1987). A GaAs MESFET mixer with very low intermodulation. IEEE Transactions of Microwave Theory and Techniques MTT, 35(4), 425–429.

    Article  Google Scholar 

  31. http://www.linear.com/pc/productDetail.jsp?navId=H0,C1,C1155,C1001,C1150,P38869.

  32. http://webench.national.com/appinfo/adc/ghz_adc.html.

  33. Dagher, H., Stubberud, P. A., Masenten, W. K., Conta, M., & Dinh, T. V. (2004). A 2-GHz analog-to-digital delta-sigma modulator for CDMA receivers with 79-dB signal-to-noise ratio in 1.23-MHz bandwidth. IEEE Journal of Solid-State Circuits, 39(11), 1819–1827.

    Article  Google Scholar 

  34. Breems, L. J., Rutten, R., van Veldhoven, R. H. M., & van der Weide, G. (2007). A 56mW continuous-time quadrature cascaded modulator with 77 dB DR in a near zero-IF 20 MHz band. IEEE Journal of Solid-State Circuits, 42(12), 2696–2705.

    Article  Google Scholar 

  35. Aigner, R., Ella, J., Timme, H.-J., Elbrecht, L., Nessler, W., & Marksteiner, S. (2002). Advancement of MEMS into RF-filter applications. Digest international electron devices meeting 2002, pp. 897–900.

  36. Aigner, R. (2005). MEMS in RF-filter applications: Thin film acoustic-wave technology. In The 13th international conference on solid-state sensors, actuators and microsystems 2005, Vol. 1, pp. 5–8, June 2005.

  37. Yu, H., Pang, W., Zhang, H., & Kim, E.-S. (2007). Ultra temperature-stable bulk-acoustic-wave resonators with SiO2 compensation layer. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(10), 2102–2109.

    Article  Google Scholar 

  38. Berge, J., Vorobiev, A., Steichen, W., & Gevorgian, S. (2007). Tuneably solidly mounted thin film bulk acoustic resonators based on BaxSr1−xTiO3 films. IEEE Microwave and Wireless Components Letters, 17(9), 655–657.

    Article  Google Scholar 

  39. Nguyen, C. T. C. (2007). MEMS technology for timing and frequency control. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(2), 251–270.

    Article  Google Scholar 

  40. Lin, Y.-W., Li, S.-S., Ren, Z., & Nguyen, C. T.-C. Third-order intermodulation distortion in capacitively-driven VHF micromechanical resonators. In Proceedings of IEEE ultrasonic symposium, pp. 1592–1595, September 2005.

  41. Razavi, B. (1998). RF microelectronics. Prentice Hall, Chapter 2.1.1.

  42. Paratek Microwave Inc. (2004). Thin film electronically tunable preselectors for software defined radios. Microwave Journal, 47, 138–144.

    Google Scholar 

  43. Al-Ahmad, M., Maenner, R., Matz, R., & Russer, P. (2005). Wide piezoelectric tuning of LTCC bandpass filters. IEEE MTT-S International Microwave Symposium Digest, 4, 1275–1278.

    Article  Google Scholar 

Download references

Acknowledgments

The author wants to thank Profs. Jerzy Dabrowski and Spartak Gevorgian and Dr. Tim Snodgrass for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Svensson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, C. The blocker challenge when implementing software defined radio receiver RF frontends. Analog Integr Circ Sig Process 64, 81–89 (2010). https://doi.org/10.1007/s10470-009-9446-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-009-9446-z

Keywords

Navigation