Skip to main content
Log in

Triangular Matrix Categories I: Dualizing Varieties and Generalized One-point Extensions

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Following Mitchell’s philosophy, in this paper we define the analogous of the triangular matrix algebra to the context of rings with several objects. Given two preadditive categories \(\mathcal {U}\) and \(\mathcal {T}\) and \(M\in \mathsf {Mod}(\mathcal {U}\otimes \mathcal {T}^{op})\) we construct the triangular matrix category \(\mathbf {{\varLambda }}:=\left [\begin {array}{ll} \mathcal {T} & 0 \\ M & \mathcal {U} \end {array}\right ]\). First, we prove that Mod(Λ) is equivalent to a comma category \((\mathsf {Mod}(\mathcal {T}), \mathbb {G}\mathsf {Mod}(\mathcal {U}))\) which is induced by a functor \(\mathbb {G}: \mathsf {Mod}(\mathcal {U})\rightarrow \text {Mod}(\mathcal {T})\). One of our main results is that if \(\mathcal {U}\) and \(\mathcal {T}\) are dualizing K-varieties and \(M\in \mathsf {Mod}(\mathcal {U}\otimes \mathcal {T}^{op})\) satisfies certain conditions then \(\mathbf {{\varLambda }}:=\left [\begin {array}{ll} \mathcal {T} & 0 \\ M & \mathcal {U} \end {array}\right ]\) is a dualizing variety (see Theorem 6.10). In particular, mod(Λ) has Auslander-Reiten sequences. Finally, we apply the theory developed in this paper to quivers and give a generalization of the so called one-point extension algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assem, I., Simson, D., Skowrónski, A.: Elements of the representation theory of associative algebras, vol. 1: techniques of representation theory, london mathematical society student texts 65 cambridge university press (2006)

  2. Auslander, M.: Coherent functors. Proc. Conf. Categorical Algebra (la Jolla, Calif, 1965), 189-231. Springer, New York (1966)

    Google Scholar 

  3. Auslander, M.: Representation dimension of artin algebras. Queen Mary College Mathematics Notes, 1971 Republished in Selected Works of Maurice Auslander: Part 1 Amer. Math. Soc. Providence (1999)

  4. Auslander, M.: Representation Theory of Artin Algebras I. Comm. Algebra 1(3), 177–268 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auslander, M.: M. Representation theory of artin algebras II. Comm. Algebra 1(4), 269–310 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varietes. Adv. Math. 12(3), 306–366 (1974)

    Article  MATH  Google Scholar 

  7. Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varietes II : Hereditary dualizing R-varieties. Adv. in Math. 17(2), 93–121 (1975)

    Article  MATH  Google Scholar 

  8. Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varietes III : Dualizing R-varieties stably equivalent to hereditary dualizing R-varieties. Adv. in Math. 17(2), 122–142 (1975)

    Article  MATH  Google Scholar 

  9. Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varietes IV: Higher global dimension. Adv. in Math. 17(2), 143–166 (1975)

    Article  MATH  Google Scholar 

  10. Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varietes V: Artin Algebras stably equivalent to hereditary algebras. Adv. in Math. 17(2), 167–195 (1975)

    Article  MATH  Google Scholar 

  11. Auslander, M., Reiten, I.: Representation Theory of Artin Algebras III: Almost split sequences. Comm. in Algebra 3(3), 239–294 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Auslander, M., Reiten, I.: Representation Theory of Artin Algebras IV: Invariants given by almost split sequences. Comm. in Algebra 5(5), 443–518 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Auslander, M., Reiten, I.: Representation Theory of Artin Algebras V. Methods for computing almost split sequences and irreducible morphisms. Comm. in Algebra 5(5), 519–554 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Auslander, M., Reiten, I.: Representation Theory of Artin Algebras VI. A functorial approach to almost split sequences. Comm. in Algebra 6(3), 257–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Auslander, M., Platzeck, M.I., Reiten, I.: Coxeter functors without diagrams. Trans. Amer. Math. Soc. 250, 1–46 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Auslander, M.: A functorial approach to representation theory. Representations of algebras (ICRA III, Puebla 1980) 105-179, Lectures notes in math. 944. Springer, New York (1986)

    Google Scholar 

  17. Auslander, M., Reiten, I., Smalø, S.: Representation theory of artin algebras. Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  18. Bak, R.H.: Dualizable, semi-flat objects in abstract module categories. Math Z. 296, 353–371 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chase, S.U.: A generalization of the ring of triangular matrices. Nagoya Math. J. 18, 13–25 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Q., Zheng, M.: Recollements of abelian categories and special types of comma categories. J. Algebra. 321(9), 2474–2485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dlab, V., Ringel, C.M.: Representations of graphs and algebras. Memoirs of the A.M.S. No. 173 (1976)

  22. Fields, K. L.: On the global dimension of residue rings. Pac J. Math. 32, 345–349 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Freyd, P.: Representations in abelian categories. In: Proceedings of the conference on categorical algebra. La Jolla, pp. 95–120 (1966)

  24. Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories Lecture Notes in Mathematics. No. 456. Springer, Heidelberg (1975)

    Book  Google Scholar 

  25. Gordon, R., Green, E.L.: Modules with cores and amalgamations of indecomposable modules. Memoirs of the A.M.S. No.187 (1978)

  26. Green, E. L.: The representation theory of tensor algebras. J. Algebra 34, 136–171 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Green, E. L.: On the representation theory of rings in matrix form. Pacific Journal of Mathematics. 100(1), 123–138 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Haghany, A., Varadarajan, K.: Study of formal triangular matrix rings. Comm. in algebra 27(11), 5507–5525 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Happel, D.: The Coxeter polynomial for a one-point extension algebra. J. Algebra 321, 2028–2041 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Harada, M.: On perfect categories. I. Osaka J. Math. 10, 329–341 (1973)

    MathSciNet  MATH  Google Scholar 

  31. Harada, M.: On perfect categories II: Hereditary categories. Osaka J. Math. 10, 343–355 (1973)

    MathSciNet  MATH  Google Scholar 

  32. Harada, M.: On perfect categories III: Hereditary and QF-3 Categories. Osaka J. Math. 10, 357–367 (1973)

    MathSciNet  MATH  Google Scholar 

  33. Harada, M.: On perfect categories IV :Quasi-Frobenius Categories. Osaka J. Math. 10, 585–596 (1973)

    MathSciNet  MATH  Google Scholar 

  34. Hartshorne, R.: Coherent functors. Adv. in Math. 140(1), 44–94 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Holm, H.: Modules with cosupport and injective functors. Algebr Represent Theor 13, 543–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hu, F.: Hochschild and ordinary cohomology rings of small categories. Adv. in Math. 219(6), 1872–1893 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kelly, G. M.: On the radical of a category. J. Aust. Math. Soc. 4, 299–307 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krause, H.: Krull-Schmidt categories and projective covers. Expo. Math. 33, 535–549 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Martínez-Villa, R., Ortíz-Morales, M.: Tilting theory and functor categories III: the maps category. Inter. Journal of Algebra. 5(11), 529–561 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Mendoza, O., Ortíz, M., Sáenz, C., Santiago, V.: A generalization of the theory of standardly stratified algebras: Standardly stratified ringoids. Glasg. Math. J.:1–36. https://doi.org/10.1017/S0017089520000476 (2020)

  41. Michelena, S., Platzeck, M.I.: Hochschild cohomology of triangular matrix algebras. J. Algebra 233(2), 502–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mitchell, B.: Theory of Categories. Pure and Appl Math. vol. 17. Academic Press, New York (1965)

    Google Scholar 

  43. Mitchell, B.: Rings with several objects. Adv. in Math. 8, 1–161 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. Oberst, U., Röhrl, H.: Flat and coherent functors. J. Algebra 14, 91–105 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  45. Palmér, I., Ross, J. E.: Explicit formulae for the global homological dimension of the trivial extensions of rings. J. Algebra 27, 380–413 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  46. Peschke, G., Linden, T.V.: The Yoneda isomorphism commutes with homology. J. Pure Appl. Algebra 220(2), 495–517 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Popescu, N: Abelian categories with applications to rings and modules. London Mathematical Society Monographs No. 3. Academic Press, London (1973)

    Google Scholar 

  48. Reiten, I.: The use of almost split sequences in the representation theory of artin algebras, Lecture Notes in Math. vol. 944, pp. 29–104. Springer, Berling (1982)

    Google Scholar 

  49. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Mathematics. Springer, Berlin (1984)

    Book  Google Scholar 

  50. Ringel, C.M., Schmidmeier, M.: The Auslander Reiten translation in submodule categories. Trans. Amer Math. Soc. 360(2), 691–716 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Schröer, J.: On the infinite radical of a module category. Proc. London Math. Soc. 81(3), 651–674 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Categories, D. Simson.: Pure Semisimple Categories and Rings of Finite Representation Type. J. Algebra 48, 290–296 (1977)

    Article  MathSciNet  Google Scholar 

  53. Skartsæterhagen, Ø.: Quivers and admissible relations of tensor products and trivial extensions. Master Thesis. Norwegian University of Science and Technology (2011)

  54. Smalø, S.O.: Functorial finite subcategories over triangular matrix rings. In: Proceedings of the American Mathematical Society vol. 111. No.3 (1991)

  55. Stenström, B.: Purity in functor categories. J Algebra 8, 352–361 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  56. Šťovíček, J.: Telescope Conjecture, Idempotent Ideals and the Transfinite Radical. Trans. Amer. Math. Soc. 362(3), 1475–1489 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Street, R.: Ideals, Radicals, and Structure of Additive categories. Appl. Cat Structures 3, 139–149 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  58. Skowroński, A.: Tame triangular matrix algebras over Nakayama algebras. J. London Math. Soc. 34, 245–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ying, H., Zhang, S.: Representation dimensions of triangular matrix algebras. Linear Algebra Appl. 438(5), 2004–2017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhu, B.: Triangular matrix algebras over quasi-hereditary algebras. Tsukuba J. Math. 25(1), 1–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank project PAPIIT-Universidad Nacional Autónoma de México IA105317. The authors are very grateful for the referee’s valuable comments and suggestions, which have improved the quality and readability of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ortiz Morales.

Additional information

Presented by: Pramod Achar

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galeana, A.L., Morales, M.O. & Vargas, V.S. Triangular Matrix Categories I: Dualizing Varieties and Generalized One-point Extensions. Algebr Represent Theor 26, 831–880 (2023). https://doi.org/10.1007/s10468-022-10114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-022-10114-9

Keywords

Mathematics Subject Classification (2010)

Navigation