Skip to main content
Log in

Maximal Quadratic Modules on ∗-rings

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

We generalize the notion of and results on maximal proper quadratic modules from commutative unital rings to ∗-rings and discuss the relation of this generalization to recent developments in noncommutative real algebraic geometry. The simplest example of a maximal proper quadratic module is the cone of all positive semidefinite complex matrices of a fixed dimension. We show that the support of a maximal proper quadratic module is the symmetric part of a prime ∗-ideal, that every maximal proper quadratic module in a Noetherian ∗-ring comes from a maximal proper quadratic module in a simple artinian ring with involution and that maximal proper quadratic modules satisfy an intersection theorem. As an application we obtain the following extension of Schmüdgen’s Strict Positivstellensatz for the Weyl algebra: Let c be an element of the Weyl algebra \(\mathcal{W}(d)\) which is not negative semidefinite in the Schrödinger representation. It is shown that under some conditions there exists an integer k and elements \(r_1,\ldots,r_k \in \mathcal{W}(d)\) such that ∑ j=1 k r j c r j is a finite sum of hermitian squares. This result is not a proper generalization however because we don’t have the bound kd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrozie, C.-G., Vasilescu, F.-H.: Operator-theoretic Positivstellensätze. Z. Anal. Anwendungen 22(2), 299–314 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Cimprič, J.: A representation theorem for archimedean quadratic modules on ∗-rings. Canad. Math. Bull. (2007) (in press)

  3. Cohn, P.M.: Skew Fields, Theory of General Division Rings. Cambridge University Press, Cambridge (1995), ISBN 0-521-43217-0

    MATH  Google Scholar 

  4. McConnell, J.C., Robson, J.C.: Noncommutative noetherian rings. In: Graduate Studies in Mathematics (Rev. edn.), vol. 30 (xx+636 pp.). American Mathematical Society, Providence, RI (2001), ISBN: 0-8218-2169-5

    Google Scholar 

  5. McCullough, S., Putinar, M.: Noncommutative sums of squares. Pacific J. Math. 218(1), 167–171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Domokos, M.: Goldie’s theorems for involution rings. Comm. Algebra 22(2), 371–380 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Handelman, D.: Rings with involution as partially ordered abelian groups. Rocky Mountain J. Math. 11(3), 337–381 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Helton, J.W.: Positive noncommutative polynomials are sums of squares. Ann. of Math. 156(2), 675–694 (2002)

    MATH  MathSciNet  Google Scholar 

  9. Jacobi, T.: Über die Darstellung positiver Polynome auf semi-algebraischen Kompakta. Ph.D. thesis, University of Konstanz (1999)

  10. Klep, I., Schweighofer, M.: A Nichtnegativstellensatz for polynomials in noncommuting variables. Israel J. Math. (in press)

  11. Lam, T.Y.: A First course in noncommutative rings. In: Graduate Texts in Mathematics (2nd edn.), vol. 131 (xx+385 pp.). Springer, New York (2001), ISBN: 0-387-95183-0

    Google Scholar 

  12. Lam, T.Y.: Lectures on modules and rings. In: Graduate Texts in Mathematics, vol. 189 (xxiv+557 pp.). Springer, New York (1999), ISBN: 0-387-98428-3

    Google Scholar 

  13. Marshall, M.: *-orderings on a ring with involution. Comm. Algebra 28(3), 1157–1173 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Putinar, M., Vasilescu, F.-H.: Solving moment problems by dimensional extension. Ann. of Math. 149(3), 1087–1107 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schmüdgen, K.: Unbounded operator algebras and representation theory. In: Operator Theory: Advances and Applications, vol. 37 (380 pp.). Birkhäuser, Basel (1990), ISBN: 3-7643-2321-3

    Google Scholar 

  16. Schmüdgen, K.: A strict Positivstellensatz for the Weyl algebra. Math. Ann. 331(4), 779–794 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Schmüdgen, K.: A strict Positivstellensatz for enveloping algebras. Math. Z. 254(3), 641–653 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schwartz, N.: About Schmüdgen’s theorem. Preprint at ihp-raag.org (2007)

  19. Walter, L.J.: Orders and signatures of higher level on a commutative ring. Ph.D. thesis, University of Saskatchewan (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cimprič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimprič, J. Maximal Quadratic Modules on ∗-rings. Algebr Represent Theor 11, 83–91 (2008). https://doi.org/10.1007/s10468-007-9076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-007-9076-z

Keywords

Mathematics Subject Classifications (2000)

Navigation