Skip to main content
Log in

Quantitative robustness of instance ranking problems

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Instance ranking problems intend to recover the ordering of the instances in a data set with applications in scientific, social and financial contexts. In this work, we concentrate on the global robustness of parametric instance ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. Existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be potentially completely inverted; therefore, we call it the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different carefully distinguished ranking problems and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point and sharp asymptotic upper bounds. We also compute empirical OIBDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal, S. (2010). Learning to rank on graphs. Machine Learning, 81(3), 333–357.

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal, S., Sengupta, S. (2009). Ranking genes by relevance to a disease. Proceedings of the 8th annual international conference on computational systems bioinformatics, 37–46.

  • Alfons, A., Croux, C., Gelper, S. (2013). Sparse least trimmed squares regression for analyzing high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Alqallaf, F., Van Aelst, S., Yohai, V. J., et al. (2009). Propagation of outliers in multivariate data. The Annals of Statistics, 37(1), 311–331.

    Article  MathSciNet  MATH  Google Scholar 

  • Averbukh, V., Smolyanov, O. (1967). The theory of differentiation in linear topological spaces. Russian Mathematical Surveys, 22(6), 201–258.

    Article  MATH  Google Scholar 

  • Becker, C., Gather, U. (1999). The masking breakdown point of multivariate outlier identification rules. Journal of the American Statistical Association, 94(447), 947–955.

    Article  MathSciNet  MATH  Google Scholar 

  • Brefeld, U., Scheffer, T. (2005). AUC maximizing support vector learning. Proceedings of the ICML 2005 workshop on ROC analysis in machine learning, 92–99.

  • Bühlmann, P., Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477–505.

    MathSciNet  MATH  Google Scholar 

  • Bühlmann, P., Van De Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applications. Berlin, Heidelberg: Springer Science & Business Media.

    Book  MATH  Google Scholar 

  • Cao, Y., Xu, J., Liu, T.Y., Li, H., Huang, Y., Hon, H. W. (2006). Adapting ranking SVM to document retrieval. Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, 186–193. ACM.

  • Chu, L. Y., Nazerzadeh, H., Zhang, H. (2020). Position ranking and auctions for online marketplaces. Management Science, 66(8), 3617–3634.

    Article  Google Scholar 

  • Clémençon, S., Achab, M. (2017). Ranking data with continuous labels through oriented recursive partitions. Advances in neural information processing systems, 4603–4611.

  • Clémençon, S., Vayatis, N. (2007). Ranking the best instances. Journal of Machine Learning Research, 8(Dec), 2671–2699.

    MathSciNet  MATH  Google Scholar 

  • Clémençon, S., Vayatis, N. (2008). Tree-structured ranking rules and approximation of the optimal ROC curve. Proceedings of the 2008 conference on algorithmic learning theory. Lecture Notes in Artificial Intelligence, Vol. 5254, 22–37.

  • Clémençon, S., Vayatis, N. (2010). Overlaying classifiers: a practical approach to optimal scoring. Constructive Approximation, 32(3), 619–648.

    Article  MathSciNet  MATH  Google Scholar 

  • Clémençon, S., Lugosi, G., Vayatis, N. (2008). Ranking and empirical minimization of U-statistics. The Annals of Statistics, 36(2), 844–874.

    Article  MathSciNet  MATH  Google Scholar 

  • Clémençon, S., Depecker, M., Vayatis, N. (2013a). Ranking forests. Journal of Machine Learning Research, 14(Jan), 39–73.

    MathSciNet  MATH  Google Scholar 

  • Clémençon, S., Depecker, M., Vayatis, N. (2013b). An empirical comparison of learning algorithms for nonparametric scoring: the TreeRank algorithm and other methods. Pattern Analysis and Applications, 16(4), 475–496.

    Article  MathSciNet  MATH  Google Scholar 

  • Clémençon, S., Robbiano, S., Vayatis, N. (2013c). Ranking data with ordinal labels: Optimality and pairwise aggregation. Machine Learning, 91(1), 67–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Davies, P. L. (1993). Aspects of robust linear regression. The Annals of Statistics, 21(4), 1843–1899.

    Article  MathSciNet  MATH  Google Scholar 

  • Davies, P. L., Gather, U. (2005). Breakdown and groups. The Annals of Statistics, 33(3), 977–1035.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L. (2006). High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discrete & Computational Geometry, 35(4), 617–652.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., Huber, P. J. (1983). The notion of breakdown point. A Festschrift for Erich L. Lehmann, 157–184.

  • Donoho, D. L., Stodden, V. (2006). Breakdown point of model selection when the number of variables exceeds the number of observations. The 2006 IEEE international joint conference on neural network proceedings, 1916–1921. IEEE.

  • Freund, Y., Iyer, R., Schapire, R. E., et al. (2003). An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4(Nov), 933–969.

    MathSciNet  MATH  Google Scholar 

  • Friedman, J., Hastie, T., Tibshirani, R. (2001). The elements of statistical learning. Springer Series in Statistics, Vol. 1. New York, NY: Springer New York.

    MATH  Google Scholar 

  • Fürnkranz, J., Hüllermeier, E. (2011). Preference learning, Vol. 19. 01 ISBN 978-3-642-14124-9. https://doi.org/10.1007/978-3-642-14125-6.

  • Fürnkranz, J., Hüllermeier, E., Vanderlooy, S. (2009). Binary decomposition methods for multipartite ranking. Joint European conference on machine learning and knowledge discovery in databases, 359–374. Berlin, Heidelberg: Springer.

  • Gather, U., Hilker, T. (1997). A note on Tyler’s modification of the mad for the stahel-donoho estimator. Annals of Statistics, 25(5), 2024–2026.

    Article  MathSciNet  MATH  Google Scholar 

  • Genton, M. G. (1998). Spatial breakdown point of variogram estimators. Mathematical Geology, 30(7), 853–871.

    Article  MathSciNet  MATH  Google Scholar 

  • Genton, M. G. (2003). Breakdown-point for spatially and temporally correlated observations. Developments in robust statistics, 148–159. Heidelberg: Springer.

    Chapter  Google Scholar 

  • Genton, M. G., & Lucas, A. (2003). Comprehensive definitions of breakdown points for independent and dependent observations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1), 81–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics, 42(6), 1887–1896.

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel, F. R. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association, 69(346), 383–393.

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P., et al. (1986). Robust statistics: The approach based on influence functions. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • He, X. (2005). Discussion of "breakdown and groups" by P.L. Davies and U. Gather. arXiv: math/0508501.

  • Hennig, C. (2008). Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods. Journal of Multivariate Analysis, 99(6), 1154–1176.

    Article  MathSciNet  MATH  Google Scholar 

  • Herbrich, R., Graepel, T., Obermayer, K. (1999a). Support vector learning for ordinal regression. 9th international conference on artificial neural networks: ICANN ’99, 97–102. IET.

  • Herbrich, R., Graepel, T., Obermayer, K. (1999b). Regression models for ordinal data: A machine learning approach. Citeseer.

  • Hodges, J. L., Jr. (1967). Efficiency in normal samples and tolerance of extreme values for some estimates of location. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1, 163–186.

  • Hothorn, T. (2019). TH.data: TH’s data archive, URL https://CRAN.R-project.org/package=TH.data. R package version 1.0-10.

  • Huber, P. J., Ronchetti, E. (2009). Robust statistics. New Jersey: John Wiley & Sons.

    Book  MATH  Google Scholar 

  • Hubert, M. (1997). The breakdown value of the \(L_1\) estimator in contingency tables. Statistics & Probability Letters, 33(4), 419–425.

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert, M., Rousseeuw, P. J., Van Aelst, S. (2008). High-breakdown robust multivariate methods. Statistical Science, 23(1), 92–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Joachims, T. (2002). Optimizing search engines using clickthrough data. Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, 133–142. ACM.

  • Kanamori, T., Takenouchi, T., Eguchi, S., et al. (2004). The most robust loss function for boosting. Neural information processing, 496–501. Berlin, Heidelberg: Springer.

  • Kayala, M. A., Azencott, C.-A., Chen, J. H., et al. (2011). Learning to predict chemical reactions. Journal of Chemical Information and Modeling, 51(9), 2209–2222.

    Article  Google Scholar 

  • Lai, H., Pan, Y., Liu, C., et al. (2013). Sparse learning-to-rank via an efficient primal-dual algorithm. IEEE Transactions on Computers, 62(6), 1221–1233.

    Article  MathSciNet  MATH  Google Scholar 

  • Laporte, L., Flamary, R., Canu, S., et al. (2014). Nonconvex regularizations for feature selection in ranking with sparse SVM. IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1118–1130.

    Article  Google Scholar 

  • Maronna, R. A., Martin, R. D., Yohai, V. J., et al. (2019). Robust statistics: theory and methods (with R). Chichester, England: John Wiley & Sons.

    MATH  Google Scholar 

  • Meinshausen, N., Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417–473.

    Article  MathSciNet  MATH  Google Scholar 

  • Mohan, A., Chen, Z., Weinberger, K. (2011). Web-search ranking with initialized gradient boosted regression trees. Proceedings of the learning to rank challenge, 77–89. PMLR.

  • Morrison, J. L., Breitling, R., Higham, D. J., et al. (2005). Generank: Using search engine technology for the analysis of microarray experiments. BMC Bioinformatics, 6(1), 1–14.

    Article  Google Scholar 

  • Page, L., Brin, S., Motwani, R., et al. (1999). The pagerank citation ranking: Bringing order to the web. Technical Report Nr. 1999-66, Stanford InfoLab, November URL http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-WP-1999-0120.

  • Pahikkala, T., Tsivtsivadze, E., Airola, A. et al. (2007). Learning to rank with pairwise regularized least-squares. SIGIR 2007 workshop on learning to rank for information retrieval, Vol. 80, 27–33.

  • Pahikkala, T., Airola, A., Naula, P. et al. (2010). Greedy RankRLS: A linear time algorithm for learning sparse ranking models. SIGIR 2010 workshop on feature generation and selection for information retrieval, 11–18. ACM.

  • Pickett, K. S. (2006). Audit planning: A risk-based approach. New Jersey: John Wiley & Sons.

    Google Scholar 

  • Qian, C., Tran-Dinh, Q., Fu, S., et al. (2019). Robust multicategory support matrix machines. Mathematical Programming, 176(1–2), 429–463.

    Article  MathSciNet  MATH  Google Scholar 

  • Rakotomamonjy, A. (2004). Optimizing area under Roc curve with SVMs. Proceedings of the ECAI-2004 workshop on ROC analysis in AI, 71–80.

  • Rieder, H. (1994). Robust Asymptotic Statistics, Vol. 1. New York: Springer Verlag.

    Book  MATH  Google Scholar 

  • Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388), 871–880.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. Mathematical Statistics and Applications, 8(37), 283–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Rousseeuw, P. J., Hubert, M. (2011). Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 73–79.

    Google Scholar 

  • Rousseeuw, P. J., Leroy, A. M. (2005). Robust regression and outlier detection, Vol. 589. Hoboken, New Jersey: John Wiley & Sons.

    MATH  Google Scholar 

  • Rousseeuw, P. J., Van Driessen, K. (2006). Computing LTS regression for large data sets. Data Mining and Knowledge Discovery, 12(1), 29–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruckdeschel, P., Horbenko, N. (2012). Yet another breakdown point notion: EFSBP. Metrika, 75(8), 1025–1047.

    Article  MathSciNet  MATH  Google Scholar 

  • Rudin, C. (2009). The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research, 10(Oct), 2233–2271.

    MathSciNet  MATH  Google Scholar 

  • Sakata, S., White, H. (1995). An alternative definition of finite-sample breakdown point with applications to regression model estimators. Journal of the American Statistical Association, 90(431), 1099–1106.

    MathSciNet  MATH  Google Scholar 

  • Sakata, S., White, H. (1998). High breakdown point conditional dispersion estimation with application to S & P 500 daily returns volatility. Econometrica, 529–567.

  • Schölkopf, B., Herbrich, R., Smola, A. (2001). A generalized representer theorem. Computational Learning Theory, 416–426. Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Sculley, D. (2010). Combined regression and ranking. Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, 979–988.

  • Stromberg, A. J., Ruppert, D. (1992). Breakdown in nonlinear regression. Journal of the American Statistical Association, 87(420), 991–997.

    Article  MathSciNet  MATH  Google Scholar 

  • Tian, Y., Shi, Y., Chen, X., et al. (2011). AUC maximizing support vector machines with feature selection. Procedia Computer Science, 4, 1691–1698.

    Article  Google Scholar 

  • Torgo, L., Ribeiro, R. (2007). Utility-based regression. European conference on principles of data mining and knowledge discovery, 597–604. Berlin, Heidelberg: Springer.

  • Von Mises, R. (1947). On the asymptotic distribution of differentiable statistical functions. The Annals of Mathematical Statistics, 18(3), 309–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, S., Nan, B., Rosset, S., et al. (2011). Random lasso. The Annals of Applied Statistics, 5(1), 468.

    Article  MathSciNet  MATH  Google Scholar 

  • Werner, D. (2006). Funktionalanalysis. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Werner, T. (2021a). A review on instance ranking problems in statistical learning. Machine Learning, 111(2), 415–463.

    Article  MathSciNet  MATH  Google Scholar 

  • Werner, T. (2021b). Trimming stability selection increases variable selection robustness. arXiv:2111.11818.

  • Werner, T. (2022). Elicitability of instance and object ranking. Decision Analysis, 19(2), 123–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Yoganarasimhan, H. (2020). Search personalization using machine learning. Management Science, 66(3), 1045–1070.

    Article  Google Scholar 

  • Zhao, J., Yu, G., Liu, Y. (2018). Assessing robustness of classification using angular breakdown point. Annals of Statistics, 46(6B), 3362.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Werner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The online version of this article contains supplementary material.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 515 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werner, T. Quantitative robustness of instance ranking problems. Ann Inst Stat Math 75, 335–368 (2023). https://doi.org/10.1007/s10463-022-00847-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-022-00847-1

Keywords

Navigation