Skip to main content
Log in

Asymptotic properties of parallel Bayesian kernel density estimators

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this article, we perform an asymptotic analysis of Bayesian parallel kernel density estimators introduced by Neiswanger et al. (in: Proceedings of the thirtieth conference on uncertainty in artificial intelligence, AUAI Press, pp 623–632, 2014). We derive the asymptotic expansion of the mean integrated squared error for the full data posterior estimator and investigate the properties of asymptotically optimal bandwidth parameters. Our analysis demonstrates that partitioning data into subsets requires a non-trivial choice of bandwidth parameters that optimizes the estimation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boyd, S., Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press.

  • De Valpine, P. (2004). Monte Carlo state-space likelihoods by weighted posterior kernel density estimation. Journal of the American Statistical Association, 99(466), 523–536.

    Article  MathSciNet  MATH  Google Scholar 

  • Duong, T., Hazelton, M. (2005). Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics, 32(3), 485–506.

  • Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate probability density. Theory of Probability & Its Applications, 14(1), 153–158.

    Article  MathSciNet  Google Scholar 

  • Ge, R., Huang, F., Jin, C., Yuan, Y. (2015). Escaping from saddle points—Online stochastic gradient for tensor decomposition. In Proceedings of conference on learning theory (pp. 797–842), 3–6 July.

  • Geyser Observation and Study Association. (2017). Old faithful. http://www.geyserstudy.org/geyser.aspx?pGeyserNo=OLDFAITHFUL. Accessed 21 Oct 2017.

  • Langford, J., Smola, A. J., Zinkevich, M. (2009). Slow learners are fast. Advances in Neural Information Processing Systems, 22, 2331–2339.

  • Miroshnikov, A., Wei, Z., Conlon, E. M. (2015). Parallel Markov chain Monte Carlo for non-Gaussian posterior distributions. Stat, 4(1), 304–319.

  • Neiswanger, W., Wang, C., Xing, E. P. (2014). Asymptotically exact, embarrassingly parallel MCMC. In Proceedings of the thirtieth conference on uncertainty in artificial intelligence (pp. 623–632). AUAI Press, 23–27 July.

  • Nelder, J. A., Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313.

  • Newman, D., Asuncion, A., Smyth, P., Welling, M. (2009). Distributed algorithms for topic models. Journal of Machine Learning Research, 10, 1801–1828.

  • Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33(3), 1065–1076.

    Article  MathSciNet  MATH  Google Scholar 

  • Propp, J. G., Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures & Algorithms, 9(1–2), 223–252.

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 27(3), 832–837.

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, S. L. (2017). Comparing consensus Monte Carlo strategies for distributed Bayesian computation. Brazilian Journal of Probability and Statistics, 31(4), 668–685.

    Article  MathSciNet  MATH  Google Scholar 

  • Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., McCulloch, R. E. (2016). Bayes and big data: The consensus Monte Carlo algorithm. International Journal of Management Science and Engineering Management, 11(2), 78–88.

  • Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). New York: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Simonoff, J. (1996). Smoothing methods in statistics. Springer series in statistics. New York: Springer.

    Book  MATH  Google Scholar 

  • Sköld, M., Roberts, G. O. (2003). Density estimation for the Metropolis-Hastings algorithm. Scandinavian Journal of Statistics, 30(4), 699–718.

  • Smola, A., Narayanamurthy, S. (2010). An architecture for parallel topic models. Proceedings of the VLDB Endowment, 3(1–2), 703–710.

  • van Eeden, C. (1985). Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous. Annals of the Institute of Statistical Mathematics, 37(1), 461–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Wand, M. P., Jones, M. C. (1994). Multivariate plug-in bandwidth selection. Computational Statistics, 9(2), 97–116.

  • Wang, X., Dunson, D. B. (2013). Parallelizing MCMC via Weierstrass sampler. arXiv preprint arXiv:1312.4605.

  • West, M. (1993). Approximating posterior distributions by mixture. Journal of the Royal Statistical Society. Series B (Methodological), 55(2), 409–422.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Savelev.

Appendix

Appendix

1.1 Kernel density estimators and asymptotic error analysis

In this section, we will use the following notation. The function f denotes a probability density, and its kernel density estimator is given by

$$\begin{aligned} \hat{f}(x; X_1, X_2,\ldots , X_N, h )=\frac{1}{N h}\sum _{i=1}^{N}K \left( \frac{x-X_{i}}{h}\right) . \end{aligned}$$
(33)

where \(X_1,X_2,\ldots X_n \sim f\) are i.i.d. samples.

Lemma 6

(Bias expansion) Let K satisfy (H3) and (H4). Let f be a probability density function satisfying (H5) and (H6). Let \(\widehat{f}_{n,h}(x)\) be an estimation of f given by (33). Then,

  1. (i)

    \(\text {bias}(\widehat{f}_{n,h})\) is given by

    $$\begin{aligned} \begin{aligned} \big [\text {bias}(\widehat{f}_{n,h})\big ] (x)&= \mathbb {E}\big [\widehat{f}_{n,h}(x)\big ]-f(x)=\frac{h^2k_2f''(x)}{2}+ {[E_b(f,K)](x ; h)}, \end{aligned} \end{aligned}$$
    (34)

    where

    $$\begin{aligned} E_b(x;h) :=\int _{\mathbb {R}}K(t)\left( \int _{x}^{x-ht}\frac{f'''(z)(x-ht -z)^2}{2}\,\mathrm{d}z\right) \,\mathrm{d}t. \end{aligned}$$
  2. (ii)

    For all \(n\ge 1\) and \(h>0\), the term \(E_b(\cdot ; n,h)\) satisfies the bounds

    $$\begin{aligned} \begin{aligned} |E_b(x ; h)| \,&\le \, \frac{C k_3}{6}h^3, \quad x\in \mathbb {R},\\ \int _{\mathbb {R}} |E_b(x ; h)|\, \mathrm{d}x \,&\le C\frac{k_3}{6} h^3 ,\\ \int _{\mathbb {R}} |E_b(x ; n,h)|^2\, \mathrm{d}x \,&\le \,\frac{C^2 k_3^2}{36} h^6, \end{aligned} \end{aligned}$$
    (35)

    for some constant C.

  3. (iii)

    The square-integrated \(bias(\widehat{f}_{n,k})\) satisfies

    $$\begin{aligned} \int _{\mathbb {R}} \text {bias}^2(\widehat{f}_{n,k}) \, \mathrm{d}x \, = \, \frac{h^4 k_2^2}{4}\int _{\mathbb {R}} (f''(x))^2 \, \mathrm{d}x + \mathcal {E}_b(n,h) \, < \, \infty \end{aligned}$$

    with

    $$\begin{aligned} |\mathcal {E}_b(n,h)| \le C_b \left( k_2 + \frac{k_3}{6}h\right) \frac{k_3 h^5}{6}, \end{aligned}$$
    (36)

    for some constant \(C_b\), and all \(n \ge 1\), \(h>0\).

Proof

Using (33) and the fact that \(X_i\), \(i=1,\ldots ,n\) are i.i.d., we obtain

$$\begin{aligned} \begin{aligned} \text {bias}_{n,h}(x)&=\mathbb {E}\big [\widehat{f}_{n,h}(x)\big ]-f(x) \\&=\frac{1}{h}\mathbb {E}\left[ K\left( \frac{x-X_1}{h}\right) \right] -f(x)\\&=\frac{1}{h}\int _{\mathbb {R}}K\left( \frac{x-y}{h}\right) f(y)\,\hbox {d}y-f(x)\\&=\int _{\mathbb {R}}K(t)(f(x-ht)-f(x))\,\hbox {d}t, \end{aligned} \end{aligned}$$

where we used the substitution \(t=(x-y)/h\). Employing Taylor’s theorem with an error term in integral form and using (H3), we get

$$\begin{aligned} \begin{aligned}&\text {bias}_{n,h}(x) \\&\quad =\int _{\mathbb {R}}K(t)\left( -htf'(x)+\frac{h^2t^2}{2}f''(x) + \int _{x}^{x-ht}\frac{f'''(z)(x-ht-z)^2}{2}\,\hbox {d}z\right) \,\hbox {d}t\\&\quad =\frac{h^2f''(x)}{2}\int _{\mathbb {R}}t^2K(t)\,\hbox {d}t+\int _{\mathbb {R}}K(t)\left( \int _{x}^{x-ht}\frac{f'''(z)(x-ht-z)^2}{2}\,\hbox {d}z \right) \,\hbox {d}t, \end{aligned} \end{aligned}$$

which proves (i).

By (H4), we have

$$\begin{aligned} |E_b(x ; n,h)|\leqslant C\left( \int _{\mathbb {R}}K(t)\left| \int _{x}^{x-ht}\frac{(x-ht -z)^2}{2}\,\hbox {d}z\right| \, \hbox {d}t\right) = \frac{C k_3 }{6} h^3, \end{aligned}$$
(37)

and by (H6), using the substitution \(\alpha =x-ht-z\) and employing Tonelli’s theorem, we obtain

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}} |E_b(x ; n,h)|\,\hbox {d}x \\&\quad \le \, \int _{\mathbb {R}}\int _{\mathbb {R}}K(t)\int _{x-\frac{h}{2}(|t|+t)}^{x+\frac{h}{2}(|t|-t)}\frac{|f'''(z)|(x-ht -z)^2}{2}\,\hbox {d}z\,\hbox {d}t\,\hbox {d}x\\&\quad = \, \int _{\mathbb {R}}K(t)\int _{-\frac{h}{2}(|t|+t)}^{\frac{h}{2}(|t|-t)}\left( \left( \int _{\mathbb {R}}|f'''(x-ht-\alpha )|\,\hbox {d}x\right) \frac{\alpha ^2}{2} \right) \,\hbox {d}\alpha \,\hbox {d}t\\&\quad \le \, C\int _{\mathbb {R}}K(t)\left( \int _{-\frac{h}{2}(|t|-t)}^{\frac{h}{2}(|t|+t)}\frac{\alpha ^2}{2}\,\hbox {d}\alpha \,\right) \hbox {d}t =\frac{h^3}{6}C k_3. \end{aligned} \end{aligned}$$
(38)

Thus, combining the two bounds above, we conclude

$$\begin{aligned} \int _{\mathbb {R}} |E_b(x ; n,h)|^2 \, \hbox {d}x \le \frac{C k_3 }{6}h^3 \int _{\mathbb {R}} |E_b(x ; n,h)| \, \hbox {d}x \le \frac{C^2 k_3^2 }{36}h^6. \end{aligned}$$

Observe that

$$\begin{aligned} \begin{aligned} \text {bias}^2(\widehat{f}_{n,h})(x) = \frac{h^4k_2^2 }{4}(f''(x))^2 + h^2k_2 f''(x) E_b(x ; n,h) + E_b^2(x; n,h). \end{aligned} \end{aligned}$$
(39)

By (H5), (37), and (38)

$$\begin{aligned} \begin{aligned} \big |\mathcal {E}_b(n,h)\big |&:=\left| \int _{\mathbb {R}} \left( h^2k_2 f''(x)E_b(x ; n,h) + E_b^2(x; n,h)\right) \, \hbox {d}x \right| \\&\le \left( h^2k_2 C + \frac{C k_3}{6}h^3\right) \int _{\mathbb {R}} |E_b(x ; n,h)|\\&\le \left( h^2k_2 C + \frac{C k_3}{6}h^3\right) \frac{h^3}{6}C k_3. \end{aligned} \end{aligned}$$
(40)

By (H5) and (H6), we have \(\int _{\mathbb {R}} (f''(x))^2 \, \hbox {d}x < \infty \). Hence, by setting \(C_b=C^2\), using (39) and (40), we obtain (36). \(\square \)

Lemma 7

(Variation expansion) Let K satisfy (H3) and (H4), with \(r=2\). Let f satisfy (H5) and (H6), and \(\widehat{f}_{n,h}(x)\) be the estimator of f given by (33). Then,

  1. (i)

    \(\mathbb {V}(\widehat{f}_{n,h})\) is given by

    $$\begin{aligned} \big [\mathbb {V}(\widehat{f}_{n,h})\big ](x) =f(x)\frac{1}{nh}\int _{\mathbb {R}}K^2(t)\,\mathrm{d}t+ E_{V}(x ; n,h), \quad x \in \mathbb {R}\end{aligned}$$
    (41)

    with

    $$\begin{aligned} \begin{aligned} E_V(x;n,h)&= -\frac{1}{n}\left( \int _{\mathbb {R}} t K^2(t) \int _{0}^{1} f'(x-htu)\, \mathrm{d}u \,\mathrm{d}t \right. \\&\left. \quad +\Big (f(x)+\text {bias}(\widehat{f}_{n,h})(x)\right) ^2 \bigg ). \end{aligned} \end{aligned}$$
    (42)
  2. (ii)

    The term \(E_V(x ; n,h)\) satisfies

    $$\begin{aligned} \begin{aligned} \mathcal {E}_V(n,h)&=\left| \int _{\mathbb {R}} E_V(x)\,\mathrm{d}x\right| \\&\le \frac{C_V}{n} \left( 2 + h^2 k_2 + \big (k_2 + \frac{k_3}{3}h\big ) \frac{h^5}{6}k_3\right) . \end{aligned} \end{aligned}$$
    (43)

Proof

Using (34) and the fact that \(X_i\), \(i=1,\dots ,n\) are i.i.d., we obtain

$$\begin{aligned} \mathbb {V}(\widehat{f}_{n,h}(x))= & {} \mathbb {V}\left( \frac{1}{h}K\left( \frac{x-X_1}{h}\right) \right) \\= & {} \frac{1}{n}\int _{\mathbb {R}}\frac{1}{h^2}K^2 \left( \frac{x-y}{h}\right) f(y)\,\hbox {d}y-\frac{1}{n}\left( \int _{\mathbb {R}}\frac{1}{h}K\left( \frac{x-y}{h}\right) f(y)\,\hbox {d}y\right) ^2\\= & {} \frac{1}{nh}\int _{\mathbb {R}}K^2(t)f(x-ht)\,\hbox {d}t -\frac{1}{n}\Big (f(x)+\text {bias}(\widehat{f}_{n,h})(x)\Big )^2\\= & {} \frac{1}{nh}\int _{\mathbb {R}}K^2(t)f(x)\,\hbox {d}t +\frac{1}{nh}\int _{\mathbb {R}}K^2(t)\left( \int _{x}^{x-ht}f'(z)\,\hbox {d}z\,\right) \hbox {d}t \\&-\frac{1}{n}\Big (f(x)+\text {bias}(\widehat{f}_{n,h})(x)\Big )^2\\= & {} \frac{1}{nh}\int _{\mathbb {R}}K^2(t)f(x)\,\hbox {d}t -\frac{1}{n}\int _{\mathbb {R}}tK^2(t)\int _{0}^{1}f'(x-htu)\,\hbox {d}u\,\hbox {d}t \\&-\frac{1}{n}\Big (f(x)+\text {bias}(\widehat{f}_{n,h})(x)\Big )^2,\\ \end{aligned}$$

which proves (41) and (42).

We next estimate the terms

$$\begin{aligned} \begin{aligned} E_1(x)&:=\int _{\mathbb {R}}t K^2(t)\bigg (\int _{0}^{1}f'(x-htu)\,\hbox {d}u\bigg )\,\hbox {d}t, \\ E_2(x)&:= \Big (f(x) + \text {bias}(\widehat{f}_{n,h})(x)\Big )^2. \end{aligned} \end{aligned}$$

Observe that (H5)–(H6) imply

$$\begin{aligned} \int _{\mathbb {R}} |f'(x)|\, \hbox {d}x = \int _{\mathbb {R}} |f'(x+\alpha )|\, \hbox {d}x :=I_1\, < \, \infty \end{aligned}$$

for any \(\alpha \in \mathbb {R}\). Then, using Tonelli’s Theorem and (H4), we obtain

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}} |E_1(x)|\, \hbox {d}x&\le \int _{\mathbb {R}} |t|K^2(t)\left( \int _{\mathbb {R}} \int _{0}^{1} |f'(x-htu)|\,\hbox {d}u\,\hbox {d}x \right) \, \hbox {d}t\\&\le \int _{\mathbb {R}} |t|K^2(t) \left( \int _{0}^{1} \left( \int _{\mathbb {R}} |f'(x-htu)|\,\hbox {d}x \right) \,\hbox {d}u \right) \, \hbox {d}t \le I_1 k_1.\\ \end{aligned} \end{aligned}$$

Since \(E_1\) is integrable, we can use Fubini’s theorem, and this yields

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}} E_1(x)\, \hbox {d}x&= \int _{\mathbb {R}} t K^2(t)\left( \int _{\mathbb {R}} \int _{0}^{1} f'(x-htu)\,\hbox {d}u\,\hbox {d}x \right) \, \hbox {d}t\\&= \int _{\mathbb {R}} tK^2(t) \left( \int _{0}^{1} \left( \int _{\mathbb {R}} f'(x-htu)\,\hbox {d}x \right) \,\hbox {d}u \right) \, \hbox {d}t = 0, \end{aligned} \end{aligned}$$

where we used the fact that \(\lim _{x\rightarrow \pm \infty }f(x) = 0\). Next, by (H5) and (35), we get

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}} |E_2(x)| \, \hbox {d}x&\le 2 \int _{\mathbb {R}} \Big (f^2(x) + \text {bias}^2(\widehat{f}_{n,h})(x) \Big )\, \hbox {d}x\\&\le 2 C + C h^2 k_2 + \left( k_2 C + \frac{C k_3}{6}h\right) \frac{h^5}{3}C k_3. \end{aligned} \end{aligned}$$

Combining the above estimates, we obtain (43). \(\square \)

Lemma 8

(Kernel autocorrelation) Let K satisfy (H3) and (H4), then the function

$$\begin{aligned} K_2(z)=\int _{\mathbb {R}}K(s)K(s-z)\,\mathrm{d}s \ge 0, \quad z \in \mathbb {R}\end{aligned}$$

satisfies

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}}K_2(z)\,\mathrm{d}z&=1, \quad \int _{\mathbb {R}}z\,K_2(z)\,\mathrm{d}z&=0. \end{aligned} \end{aligned}$$

Moreover, for any sufficiently smooth f(x)

$$\begin{aligned} \int \frac{1}{h}K_2\left( \frac{z-x}{h}\right) f(z)\,\mathrm{d}z=f(x) +E_{C,f} \quad \text {with} \quad |E_{C,f}|\le \Vert f''\Vert _{\infty }k_2h^2. \end{aligned}$$

Proof

Since \(K \ge 0\), we have \(K_2 \ge 0\). Moreover, we have

$$\begin{aligned} \int _{\mathbb {R}}K_2(z)\,\hbox {d}z=\iint _{\mathbb {R}\times \mathbb {R}}K(s)K(s-z)\,\hbox {d}z\hbox {d}s=1 \end{aligned}$$

and this proves the first property. Similarly, recalling that \(\int z K(z) \,\hbox {d}z =0\), we obtain

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}}z\,K_2(z)\,\hbox {d}z&=\int _\mathbb {R}K(s)\int _\mathbb {R}(z-s+s)K(s-z)\,\hbox {d}z\,\hbox {d}s=0. \end{aligned} \end{aligned}$$

Next, we take any smooth function f and compute

$$\begin{aligned} \begin{aligned}&\int \frac{1}{h}K_2\left( \frac{z-x}{h}\right) f(z)\,\hbox {d}z =\int K_2\left( u\right) f(x-hu)\,\hbox {d}u\\&\quad =f(x)+\int K_2(u)\int _{x}^{x-hu}f''(t)(t-x+hu)\,\hbox {d}t\,\hbox {d}u. \end{aligned} \end{aligned}$$

Finally, we estimate the last term in the above formula as follows:

$$\begin{aligned} \begin{aligned}&\left| \int K_2(u)\int _{x}^{x-hu}f''(t)(t-x+hu)\,\hbox {d}t\,\hbox {d}u\right| \\&\quad \le \Vert f''\Vert _{\infty }\int K_2(u)\frac{h^2u^2}{2}\,\hbox {d}u\\&\quad = \frac{ \Vert f''\Vert _{\infty }h^2}{2}\left( \int K(s)\int (s-u)^2K(s-u)\,\hbox {d}u\hbox {d}s \right. \\&\quad \qquad \qquad \qquad \qquad \left. +\int s^2K(s)\int K(s-u)\,\hbox {d}u\hbox {d}s\right) \\&\quad \le \Vert f''\Vert _{\infty }k_2h^2. \end{aligned} \end{aligned}$$

\(\square \)

Lemma 9

(Product expectation) Let K satisfy (H3) and (H4), with \(r=2\). Let f be a probability density function that satisfies (H5) and (H6), and let \(\widehat{f}_{n,h}(x)\) be an estimate of f given by (33). Then,

$$\begin{aligned} \mathbb {E}[\widehat{f}_{n,h}(x)\widehat{f}_{n,h}(y)]-\mathbb {E}[\widehat{f}_{n,h}(x)]\mathbb {E}[\widehat{f}_{n,h}(y)]=\frac{1}{Nh}f(x) K_2\left( \frac{x-y}{h} \right) -E_{\varPi }, \end{aligned}$$
(44)

where the error term

$$\begin{aligned} E_{\varPi }= & {} \frac{1}{N} \int \left( \, s K (s) K\left( s - \frac{x-y}{h} \right) \left( \int _{0}^{1}f'(x-shu)\,\mathrm{d}u \right) \right) \mathrm{d}s \\&+\,\frac{1}{N} \mathbb {E}[\widehat{f}(x)]\mathbb {E}[\widehat{f}(y)] \end{aligned}$$

satisfies

$$\begin{aligned} \begin{aligned}&|E_{\varPi }(x,y)|\le \frac{C_\varPi }{N}, \qquad \left| \int \int E_{\varPi }(x,y) \, \mathrm{d}x \mathrm{d}y\right| \le \frac{1}{N}\left( 1+\frac{Ck_3h^3}{6}\right) ^2\\&\int \int | E_{\varPi }(x,y)|\mathrm{d}x \mathrm{d}y \le \frac{1}{N}\left( 1+k_1\,C\frac{C k_2h^2}{2}+\frac{Ck_3h^3}{6}\right) ^2, \end{aligned} \end{aligned}$$

for some constant \(C_\varPi \) and constants C given in (H6) and \(K_2\) defined in Lemma 8.

Proof

By the definition of the estimator \(\widehat{f}\), we have

$$\begin{aligned} \begin{aligned} \mathbb {E}\Big (\widehat{f}(x) \widehat{f}(y) \Big )&=\mathbb {E}\left( \frac{1}{N^2h^2}\sum _{i,j=1}^N K\left( \frac{x-X_i}{h}\right) K\left( \frac{y-X_j}{h}\right) \right) . \end{aligned} \end{aligned}$$

Since all \(\{X_i\}_{i=1}^{N}\) are i.i.d., we can split the calculation into two parts, one for the part, where the indexes coincide and the part, where indexes are different. We then can use the independence of the samples to simplify the calculation

$$\begin{aligned} \begin{aligned} \mathbb {E}\Big (\widehat{f}(x) \widehat{f}(y) \Big )&=\frac{1}{N^2h^2} \mathbb {E}\left( \sum _{i=j} K\left( \frac{x-X_i}{h}\right) K\left( \frac{y-X_i}{h}\right) \right) \\&\quad +\frac{1}{N^2h^2} \mathbb {E}\left( \sum _{i \ne j} K\left( \frac{x-X_i}{h}\right) K\left( \frac{y-X_j}{h}\right) \right) \\&= \frac{1}{Nh^2}\left[ \mathbb {E}\left( K\left( \frac{x-X}{h}\right) K\left( \frac{y-X}{h} \right) \right) \right] \\&\quad + \Big (1-\frac{1}{N}\Big )\mathbb {E}[\widehat{f}(x)]\mathbb {E}[\widehat{f}(y)], \end{aligned} \end{aligned}$$
(45)

where \(X=X_1\). The first expectation term in (45) can be expanded as

$$\begin{aligned} \begin{aligned}&\frac{1}{Nh^2}\mathbb {E}\left[ K\left( \frac{x-X}{h}\right) K\left( \frac{y-X}{h} \right) \right] \\&\quad = \frac{1}{Nh^2} \int \, K \left( \frac{x-t}{h}\right) K\left( \frac{y-t}{h} \right) \, f(t) \, \hbox {d}t\\&\quad =\frac{1}{Nh} \int \, K (s) K\left( s - \frac{x-y}{h} \right) \, \left( f(x)+\int _{x}^{x-sh}f'(z)\,\hbox {d}z \right) \, \hbox {d}s\\&\quad = f(x)\frac{1}{Nh} K_2\left( \frac{x-y}{h} \right) \\&\qquad -\frac{1}{N} \int \, s K (s) K\left( s - \frac{x-y}{h} \right) \, \left( \int _{0}^{1}f'\left( x-shu\right) \,\hbox {d}u \right) \, \hbox {d}s.\\ \end{aligned} \end{aligned}$$

Let us denote

$$\begin{aligned} E_{\varPi ,1}= & {} \frac{1}{N} \int \left( \, s K (s) K\left( s - \frac{x-y}{h} \right) \left( \int _{0}^{1}f'(x-shu)\,\hbox {d}u \right) \right) \hbox {d}s, \\ E_{\varPi ,2}= & {} \frac{1}{N}\mathbb {E}[\widehat{f}(x)]\mathbb {E}[\widehat{f}(y)]. \end{aligned}$$

Then, we obtain

$$\begin{aligned} \begin{aligned}&\mathbb {E}\Big (\widehat{f}_{n,h}(x) \widehat{f}_{n,h}(y) \Big ) - \mathbb {E}[\widehat{f}_{n,h}(x)]\mathbb {E}[\widehat{f}_{n,h}(y)]\\&\quad = f(x)\frac{1}{Nh} K_2 \left( \frac{x-y}{h} \right) \hbox {d}s-(E_{\varPi ,1}+E_{\varPi ,2}),\\ \end{aligned} \end{aligned}$$

and this establishes (44).

Observe that (H3), (H4), and (H5) imply

$$\begin{aligned} |E_{\varPi ,1}|\le \frac{C\,k_1}{N}. \end{aligned}$$

Next, according to (34) and (35)

$$\begin{aligned} |\mathbb {E}[\widehat{f}(x)]|\le C+\frac{C k_2 h^2}{2}+\frac{C k_3 h^3}{6} \quad \text {for all} \quad x\in \mathbb {R}, \end{aligned}$$

where C is a maximum of constants from (H5) and hence

$$\begin{aligned} |E_{\varPi ,2}| \le \frac{1}{N}\Big ( C+\frac{C k_2 h^2}{2}+\frac{C k_3 h^3}{6} \Big )^2. \end{aligned}$$

Combining the above estimate, we conclude that

$$\begin{aligned} |E_{\varPi }|=|E_{\varPi ,1}+E_{\varPi ,2}| \le \frac{1}{N}\left( Ck_1+\left( C+\frac{C k_2 h^2}{2}+\frac{C k_3 h^3}{6}\right) ^2\right) . \end{aligned}$$

To obtain bounds on the integral of the error term, let us consider each component of the error separately. The term \(E_{\varPi ,1}\) is integrable

$$\begin{aligned} \begin{aligned}&\iint |E_{\varPi ,1}(x,y)|\,\hbox {d}x\hbox {d}y \\&\quad \le \frac{1}{N} \iiint _{\mathbb {R}^3} \, |s|\, K (s) K\left( s - \frac{x-y}{h} \right) \, \left( \int _{0}^{1}|f'\left( x-shu\right) |\,\hbox {d}u \right) \hbox {d}s\,\hbox {d}x\,\hbox {d}y\\&\quad \le \frac{1}{N} \int _{\mathbb {R}} \, |s|\, K (s) \, \left( \int _{0}^{1} \int _\mathbb {R}|f'\left( x-shu\right) |\,\hbox {d}x \,\hbox {d}u \right) \hbox {d}s\le \frac{k_1\,C}{N}. \end{aligned} \end{aligned}$$
(46)

Next using Fubini’s theorem, we obtain

$$\begin{aligned} \begin{aligned}&\left| \iint E_{\varPi ,1}(x,y)\,\hbox {d}x\hbox {d}y\right| \\&\quad \le \frac{1}{N} \left| \iiint _{\mathbb {R}^3} \, s\, K (s) K\left( s - \frac{x-y}{h} \right) \, \left( \int _{0}^{1}f'\left( x-shu\right) \,\hbox {d}u \right) \hbox {d}s\, \hbox {d}x\,\hbox {d}y\right| \\&\quad = \frac{1}{N} \left| \int _{\mathbb {R}} \, s\, K (s) \, \left( \int _{0}^{1}\int _\mathbb {R}f'\left( x-shu\right) \,\hbox {d}x\,\hbox {d}u \right) \, \hbox {d}s\right| =0. \end{aligned} \end{aligned}$$

Therefore, using Lemma 6, (34), (35), and the Hypothesis (H6), we obtain

$$\begin{aligned} \begin{aligned} \left| \iint _{\mathbb {R}^2} E_{\varPi }(x,y)\,\hbox {d}x\hbox {d}y\right|&=\frac{1}{N} \left| \int _{\mathbb {R}} \mathbb {E}[\widehat{f}(x)]\,\hbox {d}x\right| ^2 \le \frac{1}{N}\left( 1+\frac{Ck_3h^3}{6}\right) ^2. \end{aligned} \end{aligned}$$

Finally, directly from (46), (34), and (35), we obtain

$$\begin{aligned} \begin{aligned} \iint _{\mathbb {R}^2} \left| E_{\varPi }(x,y)\right| \,\hbox {d}x\hbox {d}y&\le \iint _{\mathbb {R}^2} \left| E_{\varPi ,1}(x,y)\right| \hbox {d}x\hbox {d}y+ \iint _{\mathbb {R}^2} \left| E_{\varPi ,2}(x,y)\right| \hbox {d}x\hbox {d}y\\&\le \frac{k_1\,C}{N} + \frac{1}{N}\left( 1+\frac{Ck_2h^2}{2}+\frac{Ck_3h^3}{6}\right) ^2 .\\ \end{aligned} \end{aligned}$$

\(\square \)

Theorem 3

(MISE expansion) Let K satisfy (H3) and (H4), with \(r=2\). Let f be a probability density function that satisfies (H5) and (H6), and let \(\widehat{f}_{n,h}(x)\) be an estimate of f given by (33). Then,

$$\begin{aligned} \mathrm{MISE}(\widehat{f}_{n,h}) =\frac{h^4k^2_2}{4}\int _{\mathbb {R}}(f''(x))^2\mathrm{d}x + \frac{1}{nh} f(x)\int _{\mathbb {R}} K^2(t) \,\mathrm{d}t + \mathcal {E}_b(n,h)+\mathcal {E}_V(n,h) \end{aligned}$$

with \(\mathcal {E}_b\) and \(\mathcal {E}_V\) defined in (40) and (43), respectively. Moreover, for every \(H>0\), there exists \(C_{f,K,H}\) such that

$$\begin{aligned} |\mathcal {E}_b(h,n)+\mathcal {E}_V(h,n)| \, \leqslant \, C_{f,K,H} \Big ( h^5 + \frac{1}{n}\Big ) \end{aligned}$$

for all \(n \ge 1\) and \(H \ge h > 0\).

Proof

It is easy to show (see Silverman 1986) that

$$\begin{aligned} \begin{aligned} \mathrm{MISE}(\widehat{f}_{n,h})&=\int _{\mathbb {R}}\mathbb {E}[\widehat{f}_{n,h}(x)-f(x)]^2\,\hbox {d}x\\&= \int _{\mathbb {R}}\big (\text {bias}(\widehat{f}_{n,h})(x)\big )^2\, \hbox {d}x +\int _{\mathbb {R}}\mathbb {V}(\widehat{f}_{n,h}(x))\,\hbox {d}x, \end{aligned} \end{aligned}$$

and hence the result follows from Lemma 6 and Lemma 7. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnikov, A., Savelev, E. Asymptotic properties of parallel Bayesian kernel density estimators. Ann Inst Stat Math 71, 771–810 (2019). https://doi.org/10.1007/s10463-018-0662-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-018-0662-0

Keywords

Navigation