Skip to main content
Log in

Scattered trees in smallholder farms improve soil properties and litter decomposition in humid-agroecosystems in Ethiopia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Low agricultural productivity associated with poor soil fertility management characterizes the sub-Sahara African agriculture. Trees in farmlands are believed to improve soil properties and agricultural productivity, yet smallholders are limited in their choice of agroforestry tree species. Here, we assessed the effect of Cordia africana and Croton macrostachyus trees on soil properties and leaf litter decomposition in parkland agroforestry in Bullen District, Benshangul Gumuz, northwestern Ethiopia. We used a randomized complete block design with a distance from a tree trunk setup to draw soil samples and conduct a litter burial experiment across five farmlands. In each farmland, three mature trees per species were identified, separately, and under each tree, three transects containing three concentric radial distances measured from a tree trunk were established. Using this setup, a total of 45 composite soil samples per the study species were drawn and analyzed for soil pH, total nitrogen, available phosphorus, organic carbon, and cation exchange capacity. Additionally, leaf litter mass losses of the study species were quantified with the litterbags method. The results revealed that all the measured soil variables and litter decomposition were significantly different between distances for both C. africana and C. macrostachyus. A significantly higher nutrient contents and litter decomposition were observed under the tree canopies than outside, and for C. macrostachyus than C. africana. We conclude that trees in farmlands might improve soil properties through litter addition and decomposition. Future studies should disentangle the role of litter addition and microclimate effects of trees in farmlands on soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abdella M, Nigatu L, Akuma A (2020) Impact of parkland trees (Faidherbia albida Delile and Cordia Africana Lam) on selected soil properties and sorghum yield in eastern Oromia, Ethiopia. Agric Forest Fish 9:54

    Google Scholar 

  • Akpalu SE, Dawoe EK, Abunyewa AA (2020) Effects of Faidherbia albida on some important soil fertility indicators on agroforestry parklands in the semi-arid zone of Ghana. Afr J Agric Res 15:256–268

    Article  CAS  Google Scholar 

  • Akpo LE, Goudiaby VA, Grouzis M, Le Houerou HN (2005) Tree shade efect on soils and environmental factors in a Savanna of Senegal. West Afr J Appl Ecol 7:41–52

    Google Scholar 

  • Alemayehu G, Asfaw Z, Kelbessa E, Management B, Box PO, Ababa A (2016) Cordia africana (Boraginaceae) in Ethiopia : a review on its taxonomy, distribution, ethnobotany and conservation status. Int J Botany Stud 1:38–46

    Google Scholar 

  • Amare D, Wondie M, Mekuria W, Darr D (2019) Agroforestry of smallholder farmers in Ethiopia: practices and benefits. Small-Scale For 18:39–56

    Article  Google Scholar 

  • Anbessa B (2022) Characterizing the soils of Asossa agricultural research center farm, with closer evaluation of fertility status, Asossa Western Ethiopia. J Soil Water Sci 6:305–314

    Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Barton K (2019) MuMIn: multi-model inference. R package version 1.43.10. http://cran.R-project.org/package=MuMIn

  • Bates AD, Maechler M, Bolker B, Walker S, Haubo R, Christensen B, Singmann H, Dai B, Scheipl F, Grothendieck G (2023) Package ‘lme4’ Linear mixed-effect models using 'Eigen' and S4

  • Bedada AB, Goshu TA (2021) Farmland trees for the improvement of crop yield, soil fertilities, soil and water conservation, and carbon sequestration: a review. Agric Sci Res J 11:154–168

    Google Scholar 

  • Bekele AT, Ann B, Bo T (1993) Useful trees and shrubs of Ethiopia: identification, propagation and managment for agricultral and pastoral communities. Regional Soil Conservation Unit and Swedish International Development Authority

  • Belsky AJ, Mwongat SM, Amundsont RG (1993) Comparative effects of isolated trees on their undercanopy environments in high- and low-rainfall Savannas Author (s): Belsky AJ, Mwonga SM, Amundson RG, Duxbury JM, Ali AR, Published by : British Ecological Society Stable. J Appl Ecol 30:143–155

  • Beule L, Vaupel A, Moran-Rodas VE (2022) Abundance, diversity, and function of soil microorganisms in temperate alley-cropping agroforestry systems: a review. Microorganisms 10:1–14

    Article  Google Scholar 

  • Bjornlund V, Bjornlund H, Van Rooyen AF (2020) Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world–a historical perspective. Int J Water Resour Dev 36:1–34

    Article  Google Scholar 

  • Bowers S, Ryan C, Hou-Jones X (2017) Understanding agricultural drivers of deforestation through remote sensing opportunities and limitations in sub-Saharan Africa. IIED Working Paper. IIED, London

  • Bremner J (2012) Population and food security : Africa’s challenge. Policy Brief 1–5

  • Brown SE, Miller DC, Ordonez PJ, Baylis K (2018) Evidence for the impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in high-income countries: a systematic map protocol. Environ Evid 7:1–16

    Article  CAS  Google Scholar 

  • Bybee-Finley KA, Ryan MR (2018) Advancing intercropping research and practices in industrialized agricultural landscapes: review. Agriculture 8:1–24

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • de Carvalho AF, Fernandes-Filho EI, Daher M, Gomes L de C, Cardoso IM, Fernandes RBA, Schaefer CEGR (2021) Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agrofor Syst 95:119–134

  • Demi SM, Sicchia SR (2021) Agrochemicals use practices and health challenges of smallholder farmers in Ghana. Environ Health Insights 15:1–11

    Article  Google Scholar 

  • Derero A, Coe R, Muthuri C, Hadgu KM, Sinclair F (2021) Farmer-led approaches to increasing tree diversity in fields and farmed landscapes in Ethiopia. Agrofor Syst 95:1309–1326

    Article  Google Scholar 

  • Djukic I, Kepfer-rojas S, Kappel I, Steenberg K, Caliman A, Paquette A, Gutiérrez-girón A, Humber A, Valdecantos A, Petraglia A, Alexander H, Augustaitis A, Saillard A, Carolina A, Fernández R, Sousa AI, Lillebø AI, Gripp R, Quinde JD, Alatalo J, Seeber J, Stadler J, Kriiska K, Coulibaly K, Brigham LM, Brink L Van Den, Rustad L, Zhang L, Morillas L, Morley M, Lebouvier M, Tomaselli M, Sternberg M, Schaub M (2018) Early stage litter decomposition across biomes. Sci Total Environ 629:1369–1394

  • Dori T, Asefaw Z, Kippie T (2022) Soil characteristics under dominant agroforestry systems along toposequence of Gedeo, Southeastern Ethiopia. Environ Sustain Indicat 15:1–8

    Article  Google Scholar 

  • Fahad S, Chavan SB, Chichaghare AR, Uthappa AR, Kumar M, Kakade V, Pradhan A, Jinger D, Rawale G, Yadav DK, Kumar V, Farooq TH, Ali B, Sawant AV, Saud S, Chen S, Poczai P (2022) Agroforestry systems for soil health improvement and maintenance. Sustainability (Switzerland) 14:1–25

    Google Scholar 

  • FAO (2017) The future of food and agriculture: trends and challenges. Rome

  • Franks P, Hou-jones X, Fikreyesus D, Sintayehu M, Mamuye S, Danso EY, Meshack CK, Mcnicol I (2017) Reconciling forest conservation with food production in sub-Saharan Africa: Case studies from Ethiopia, Ghana and Tanzania. IIED Research Report, London

  • Gao J, Kang F, Han H (2016) Effect of litter quality on leaf-litter decomposition in the context of home-field advantage and non-additive effects in temperate forests in China. Pol J Environ Stud 25:1911–1920

    Article  Google Scholar 

  • Gebrewahid Y, Teka K, Gebre-Egziabhier TB, Tewolde-Berhan S, Birhane E, Eyasu G, Meresa E (2019) Dispersed trees on smallholder farms enhance soil fertility in semi-arid Ethiopia. Ecol Processes 7:1–8

    Google Scholar 

  • Getachew K, Itanna F, Mahari A (2015) Evaluation of locally available fertilizer tree / shrub species in Gozamin Woreda, North Central Ethiopia. J Agri Environ Manag 4:164–168

    Google Scholar 

  • Getahun H, Fisseha I, Mulugeta L (2014) Status of soil properties of scattered Faidherbia albida (Del) in agricultural landscapes in Central Highland of Ethiopia. Afr J Agric Res 9:3379–3387

    Google Scholar 

  • Gindaba J, Rozanov A, Negash L (2005a) Photosynthetic gas exchange, growth and biomass allocation of two Eucalyptus and three indigenous tree species of Ethiopia under moisture deficit. For Ecol Manage 205:127–138

    Article  Google Scholar 

  • Gindaba J, Rozanov A, Negash L (2005b) Trees on farms and their contribution to soil fertility parameters in Badessa, eastern Ethiopia. Biol Fertil Soils 42:66–71

    Article  Google Scholar 

  • Gorné LD, Díaz S, Minden V, Onoda Y, Kramer K, Muir C, Michaletz ST, Lavorel S, Sharpe J, Jansen S, Slot M, Chacon E, Boenisch G (2022) The acquisitive-conservative axis of leaf trait variation emerges even in homogeneous environments. Ann Bot 129:709–722

    Article  PubMed  Google Scholar 

  • Gosme M, Dufour L, Daniel H, Aguirre I, Gosme M, Dufour L, Daniel H, Aguirre I, Dupraz C (2016) Microclimatic effect of agroforestry on diurnal temperature cycle. In: 3rd European Agroforestry Conference, Institut National de Recherche Agronomique (INRA). UMR Fonctionnement et conduite des systèmes de culture tropicaux et méditerranéens. Montpellier, France

  • Gota HG (2022) A comparative study of the effects of Cordia africana, Ficus sur and Manihot esculenta on soil chemical properties in an Agroforestry System. Res Square 1–8

  • Gowing JW, Palmer M (2008) Sustainable agricultural development in sub-Saharan Africa: the case for a paradigm shift in land husbandry. Soil Use Manag 24:92–99

    Article  Google Scholar 

  • Gupta SR, Sileshi GW, Chaturvedi RK, Dagar JC (2023) Soil biodiversity and litter decomposition in agroforestry systems of the tropical regions of Asia and Africa. In: Agroforestry for sustainable intensification of agriculture in Asia and Africa 2023 Apr 20. Springer Nature Singapore, Singapore, pp 515–568

  • Haile G, Itanna F, Lemenhi M (2014) Status of soil properties of scattered Faidherbia albida (Del) in agricultural landscapes in Central Highland of Ethiopia. Afr J Agric Res 9:3379–3387

    Google Scholar 

  • Hasanuzzaman M, Hossain M (2014) Nutrient leaching from leaf litter of cropland agroforest tree species of Bangladesh. J For Environ Sci 30:208–217

    Google Scholar 

  • Hoogsteen MJJ, Lantinga EA, Bakker EJ, Groot JCJ, Tittonell PA (2015) Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur J Soil Sci 66:320–328

    Article  CAS  Google Scholar 

  • Hossain M, Siddique MRH, Rahman MS, Hossain MZ, Hasan MM (2011) Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. J For Res 22:577–582

    Article  CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A, Scheibe S (2023) Package ‘multcomp’: simultaneous inference in general parametric models

  • Isaac ME, Borden KA (2019) Nutrient acquisition strategies in agroforestry systems. Plant Soil 444:1–19

    Article  CAS  Google Scholar 

  • Kaba AJ (2020) Explaining Africa’s rapid population growth, 1950 to 2020: trends, factors, implications, and recommendations. Sociology Mind 10:226–268

    Article  Google Scholar 

  • Karberg NJ, Scott NA, Giardina CP (2008) Methods for estimating litter decomposition. Field Measurements for Forest Carbon Monitoring. https://doi.org/10.1016/j.margeo.2004.04.016

  • Kassa G, Bekele T, Demissew S, Abebe T (2022) Leaves litterfall and nutrient inputs from four multipurpose tree/shrub species of homegarden agroforestry systems. Environ Syst Res 11:1–16

    Article  Google Scholar 

  • Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM (2013) Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–1075

    Article  Google Scholar 

  • Kurzatkowski D, Martius C, Höfer H, Garcia M, Förster B, Beck L, Vlek P (2004) Litter decomposition, microbial biomass and activity of soil organisms in three agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 69:257–267

    Article  CAS  Google Scholar 

  • Kuyah S, Whitney CW, Jonsson M, Sileshi GW, Öborn I, Muthuri CW, Luedeling E (2019) Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. a meta-analysis. Agron Sustain Dev 39:1–18

    Article  Google Scholar 

  • Lagerlöf J, Adolfsson L, Börjesson G, Ehlers K, Vinyoles GP, Sundh I (2014) Land-use intensification and agroforestry in the Kenyan highland: Impacts on soil microbial community composition and functional capacity. Appl Soil Ecol 82:93–99

    Article  Google Scholar 

  • Lelamo LL (2021) A review on the indigenous multipurpose agroforestry tree species in Ethiopia: management, their productive and service roles and constraints. Heliyon 7:e07874

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Yang R, Peng X, Hou C, Ma J, Guo J (2022) Contributions of plant litter decomposition to soil nutrients in ecological tea gardens. Diversity 12:1–19

    CAS  Google Scholar 

  • Lott JE, Ong CK, Black CR (2009) Understorey microclimate and crop performance in a Grevillea robusta-based agroforestry system in semi-arid Kenya. Agric For Meteorol 149:1140–1151

    Article  Google Scholar 

  • Magnone D, Niasar VJ, Bouwman AF, Beusen AHW, van der Zee SEATM, Sattari SZ (2022) The impact of phosphorus on projected Sub-Saharan Africa food security futures. Nat Commun 13:1–10

    Article  Google Scholar 

  • Mahari A (2014) Leaf litter decomposition and nutrient release from Cordia africana Lam. and Croton macrostachyus Del. tree Species. J Environ Earth Sci 4:1–8

    Google Scholar 

  • Mahmud AA, Raj A, Jhariya MK (2021) Agroforestry systems in the tropics: a critical review. Agric Biol Res 37:83–87

    Google Scholar 

  • Mamo D (2017) Status of selected soil properties under Croton Macrostachyus Tree at Gemechis District , West Hararghe Zone, Oromia. J Resour Dev Manag 7:36–43

  • Manaye A, Tesfamariam B, Tesfaye M, Worku A, Gufi Y (2021) Tree diversity and carbon stocks in agroforestry systems in northern Ethiopia. Carbon Balance Manage 16:1–10

    Article  Google Scholar 

  • Manjur B, Abebe T, Abdulkadir A (2014) Effects of scattered F. albida ( Del) and C. macrostachyus (Lam) tree species on key soil physicochemical properties and grain yield of Maize ( Zea Mays ): a case study at umbulo Wacho watershed, southern Ethiopia. Wudpeckers J Agric Res 3:63–73

    Google Scholar 

  • Maynard DS, Bialic-Murphy L, Zohner CM, Averill C, van den Hoogen J, Ma H, Mo L, Smith GR, Acosta ATR, Aubin I, Berenguer E, Boonman CCF, Catford JA, Cerabolini BEL, Dias AS, González-Melo A, Hietz P, Lusk CH, Mori AS, Niinemets Ü, Pillar VD, Pinho BX, Rosell JA, Schurr FM, Sheremetev SN, da Silva AC, Sosinski Ê, van Bodegom PM, Weiher E, Bönisch G, Kattge J, Crowther TW (2022) Global relationships in tree functional traits. Nat Commun 13:1–12

    Article  Google Scholar 

  • Mekuria W, Dessalegn M, Amare D, Belay B, Getnet B, Girma G, Tegegne D (2022) Factors influencing the implementation of agroecological practices: Lessons drawn from the Aba-Garima watershed, Ethiopia. Front Environ Sci 10:1–15

    Article  Google Scholar 

  • Mesfin S, Haileselassie H (2022) Evaluation of soil physico-chemical properties as affected by canopies of scattered agroforestry trees on croplands. S Afr J Plant Soil 39:153–162

    Article  Google Scholar 

  • Mohammed M, Beyene A, Reshad M (2018) Influence of scattered cordiaafricana and crotonmacrostachyus trees on selected soil properties, microclimate and maize yield in Eastern Oromia. Ethiopia. Am J Agric For 6:253–262

    Google Scholar 

  • Musema K, Yirsaw E, Haile G, Temesgen H (2019) Effects of scattered Faidherbia albida (Del. A. Chev) tree on yield and yield components of three Cereal crops in Central Ethiopia. Ethiopian J Environ Dev 35:21–45

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Negash M, Starr M (2021) Litter decomposition of six tree species on indigenous agroforestry farms in south-eastern Ethiopia in relation to litterfall carbon inputs and modelled soil respiration. Agrofor Syst 95:755–766

    Article  Google Scholar 

  • Ngaba MJY, Mgelwa AS, Gurmesa GA, Uwiragiye Y, Zhu F, Qiu Q, Fang Y, Hu B, Rennenberg H (2023) Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant and Soil 1–19

  • Ortiz AI, Benayas JMR, Delgado LC (2023) Agroforestry improves soil fauna abundance and composition in the Atlantic forest of Paraguay. Agroforest yst 8:1447–1463

    Article  Google Scholar 

  • Pansu M, Gautheyrou J (2006) Handbook of soil analysis- mineralogical, organic and inorganic methods. Springer,  The Netherlands

  • Pantera A, Mosquera-Losada MR, Herzog F, den Herder M (2021) Agroforestry and the environment. Agrofor Syst 95:767–774

    Article  Google Scholar 

  • Pardon P, Reubens B, Reheul D, Mertens J, De Frenne P, Coussement T, Janssens P, Verheyen K (2017) Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agr Ecosyst Environ 247:98–111

    Article  CAS  Google Scholar 

  • Park S, Cho K (2003) Nutrient leaching from leaf litter of emergent macrophyte ( Zizania latifolia ) and the effects of water temperature on the leaching process. Korean J Biol Sci 7:289–294

    Article  Google Scholar 

  • Petraglia A, Cacciatori C, Chelli S, Fenu G, Calderisi G, Gargano D, Abeli T, Orsenigo S, Carbognani M (2019) Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil 435:187–200

    Article  CAS  Google Scholar 

  • Pfister S, Bayer P, Koehler A, Hellweg S (2011) Projected water consumption in future global agriculture: scenarios and related impacts. Sci Total Environ 409:4206–4216

    Article  CAS  PubMed  Google Scholar 

  • Pinho RC, Miller RP, Alfaia SS (2012) Agroforestry and the improvement of soil fertility: a view from amazonia. Appl Environ Soil Sci 1–11

  • Reubens B, Moeremans C, Poesen J, Nyssen J, Tewoldeberhan S, Franzel S, Deckers J, Orwa C, Muys B (2011) Tree species selection for land rehabilitation in Ethiopia: from fragmented knowledge to an integrated multi-criteria decision approach. Agrofor Syst 82:303–330

    Article  Google Scholar 

  • Rhoades CC (1996) Single-tree influences on soil properties in agroforestry: lessons from natural forest and savanna ecosystems. Agrofor Syst 35:71–94

    Article  Google Scholar 

  • Shanka D (2020) Roles of eco-friendly low input technologies in crop production in sub-Saharan Africa. Cogent Food Agric 6:1–22

    Google Scholar 

  • Smith SW, Speed JDM, Bukombe J, Hassan SN, Lyamuya RD, Mtweve PJ, Sundsdal A, Graae BJ (2019) Litter type and termites regulate root decomposition across contrasting savanna land-uses. Oikos 128:596–607

    Article  Google Scholar 

  • Song Y, Yu Y, Li Y, Du M (2023) Leaf litter chemistry and its effects on soil microorganisms in different ages of Zanthoxylum planispinum var. Dintanensis. BMC Plant Biol 23:1–14

  • Tadesse M (2007) Growth performance of three indigenous and one endemic tree species of Ethiopia on a degraded site in Central-West Ethiopia. MSc Thesis. Addis Ababa University, Addis Ababa, Ethiopia

  • Tanga AA, Erenso TF, Lemma B (2014) Effects of three tree species on microclimate and soil amelioration in the central rift valley of Ethiopia. J Soil Sci Environ Manag 5:62–71

    Article  Google Scholar 

  • Tega M, Bojago E (2023) Farmer’s perceptions of agroforestry practices, contributions to rural household farm income, and their determinants in Sodo Zuria District, Southern Ethiopia. Int J For Res 2023:15–18

    Google Scholar 

  • Tsufac AR, Awazi NP, Yerima BPK (2021) Characterization of agroforestry systems and their effectiveness in soil fertility enhancement in the south-west region of Cameroon. Curr Res Environ Sustain 3:100024

    Article  Google Scholar 

  • Tully K, Sullivan C, Weil R, Sanchez P (2015) The State of soil degradation in sub-Saharan Africa: baselines, trajectories, and solutions. Sustainability (Switzerland) 7:6523–6552

    Article  Google Scholar 

  • Utaile YU, Cross P (2016) Time-series analysis of variations in pesticide use and hazard from vegetable production in Great Britain. J Hill Agric 7:102–109

    Article  Google Scholar 

  • Utaile YU, Honnay O, Muys B, Shibru Cheche S, Helsen K (2020) Effect of Dichrostachys cinerea encroachment on plant species diversity, functional traits and litter decomposition in an East‐African savannah ecosystem. J Veg Sci 1–12

  • van Beek CL, Elias E, Yihenew GS, Heesmans H, Tsegaye A, Feyisa H, Tolla M, Melmuye M, Gebremeskel Y, Mengist S (2016) Soil nutrient balances under diverse agro-ecological settings in Ethiopia. Nutr Cycl Agroecosyst 106:257–274

    Article  Google Scholar 

  • Van Ittersum MK, Van Bussel LGJ, Wolf J, Grassini P, Van Wart J, Guilpart N, Claessens L, De Groot H, Wiebe K, Mason-D’Croz D, Yang H, Boogaard H, Van Oort PAJ, Van Loon MP, Saito K, Adimo O, Adjei-Nsiah S, Agali A, Bala A, Chikowo R, Kaizzi K, Kouressy M, Makoi JHJR, Ouattara K, Tesfaye K, Cassman KG (2016) Can sub-Saharan Africa feed itself? Proc Natl Acad Sci USA 113:14964–14969

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakwoya MB, Woldeyohannis WH, Yimamu FK (2023) Characterization and classification of soils of upper Hoha sub-watershed in Assosa District Western Ethiopia. Heliyon 9:e14866

    Article  PubMed  PubMed Central  Google Scholar 

  • Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N (2017) Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10:1–6

    Article  Google Scholar 

  • Wallwork A, Castro-trujillo B, Banin LF, Dent DH, Skiba U, Kerdraon D, Sayer EJ (2023) Soil carbon dynamics are linked to tree species growth strategy in a naturally regenerating tropical forest. Front Forests Glob Chang 6:1–16

    Google Scholar 

  • Wawire AW, Csorba Á, Tóth JA, Michéli E, Szalai M, Mutuma E, Kovács E (2021) Soil fertility management among smallholder farmers in Mount Kenya East region. Heliyon 7:1–11

    Article  Google Scholar 

  • Wilson MH, Lovell ST (2016) Agroforestry-The next step in sustainable and resilient agriculture. Sustainability (Switzerland) 8:1–15

    Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xie Y (2020) A meta-analysis of critique of litterbag method used in examining decomposition of leaf litters. J Soils Sediments 20:1881–1886

    Article  Google Scholar 

  • Yadessa A, Itanna F, Olsson M (2001) Contribution of indigenous trees to soil properties: the case of scattered trees of Cordia africana Lam. in croplands of western Oromia. Ethiopia J Nat Resour 3:245–270

    Google Scholar 

  • Zerssa G, Feyssa D, Kim DG, Eichler-Löbermann B (2021) Challenges of smallholder farming in Ethiopia and opportunities by adopting climate-smart agriculture. Agriculture (Switzerland) 11:1–26

    Google Scholar 

  • Zhao YT, Ali A, Yan ER (2017) The plant economics spectrum is structured by leaf habits and growth forms across subtropical species. Tree Physiol 37:173–185

    PubMed  Google Scholar 

  • Zhao YY, Li ZT, Xu T, Lou AR (2022) Leaf litter decomposition characteristics and controlling factors across two contrasting forest types. J Plant Ecol 15:1285–1301

    Article  Google Scholar 

  • Zingore S, Mutegi J, Agesa B, Tamene L, Kihara J (2015) Soil degradation in sub-Saharan Africa and crop production options for soil rehabilitation. Better Crops Plant Food 99:24–26

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

Download references

Acknowledgements

We thank Arba Minch University for providing a small student grant for research activities. We also thank the Department of Forestry for providing us with materials for fieldwork. Additionally, we thank the Pawi Agricultural Research Center and Wolayta Sodo Regional Soil Laboratory for their help with the lab work.

Author information

Authors and Affiliations

Authors

Contributions

Y.U.U. conceived the research idea and design; G.N.A. collected data; Y.U.U. and G.N.A. performed statistical analyses; Y.U.U. wrote the manuscript and G.N.A. commented on the manuscript.

Corresponding author

Correspondence to Yonas Ugo Utaile.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbessa, G.N., Utaile, Y.U. Scattered trees in smallholder farms improve soil properties and litter decomposition in humid-agroecosystems in Ethiopia. Agroforest Syst (2024). https://doi.org/10.1007/s10457-024-00982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10457-024-00982-z

Keywords

Navigation