Skip to main content

Advertisement

Log in

Carbon fractions as indicators of organic matter dynamics in chestnut orchards under different soil management practices

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Several studies have emphasized the negative impact of the conventional soil management (CT) system on productivity and sustainability of chestnut orchards (Castanea sativa Mill.) when compared to no-tillage with grass cover (NT). However, scarce information is available regarding the effects of these soil management systems on soil organic matter (SOM) dynamics and soil quality. SOM or soil organic carbon is a key component of soil quality and has different fractions with different lability, namely, organic C (POC), active C (AC) and hot-water extractable carbon (HWC). These are considered as indicators of changes in management-induced soil quality. Thus, a study was carried out to evaluate the effects of NT and CT systems applied in the chestnut orchards on: (i) total amount of soil organic C (TOC), including C from both organic and mineral layers; (ii) soil organic C concentration of mineral horizons (OC); (iii) labile soil organic fractions (POC, AC, HWC); (iv) and soil mineral-associated C. The study was developed in two 30-year old chestnut orchards located in Northeast Portugal, that were kept under different soil management systems (NT or CT) during the preceding 17 years. Soil samples were taken at 0–10 and 10–20 cm soil depth. No significant differences in OC concentration were observed between NT and CT, while TOC was significantly higher in NT than in CT (22.54 and 12.17 Mg/ha or 34.16 and 22.90 Mg/ha, considering the organic layer plus mineral layers at 0–10 and 0–20 cm depth (set of two depths). The NT practice led to significantly higher concentration of labile C fractions (POC, AC and HWC) than CT at 0–10 cm soil depth. These results indicate that measurement of labile soil organic C fractions, such as POC, AC and HWC, may provide a sensitive and consistent indication of changes in soil C and SOM dynamics in response to soil management practices. Overall, NT seems to ensure better soil quality than CT in chestnut orchards under Mediterranean climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agroconsultores and COBA (1991) Carta dos Solos, Carta do Uso Actual da Terra e Carta de Aptidão da Terra do Nordeste de Portugal. UTAD/PDRITM, Vila Real, Portugal

  • Alavalapati J, Shrestha R, Stainback G, Matta J (2004) Agroforestry development: an environmental economic perspective. Agrofor Syst 61:299–310

    Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A (2004) Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto. Pesq Agropec Bras 39:677–683

    Article  Google Scholar 

  • Blair G, Lefroy R, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466

    Article  Google Scholar 

  • Blake G, Hartge K (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, 2nd edn. ASA, Madison, pp 363–375

    Google Scholar 

  • Cambardella C, Elliott E (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783

    Article  Google Scholar 

  • Chen H, Hou R, Gong Y, Li H, Fan M, Kuzyakov Y (2009) Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil Tillage Res 106:85–94

    Article  Google Scholar 

  • De Leenheer L, Van Hove J (1958) Determination de la teneur en carbone organique des sols. Etude critique des méthodes titrimétriques. Pédologie 8:39–77

    Google Scholar 

  • Duval M, Galantini J, Iglesias J, Canelo S, Martinez J, Wall L (2013) Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res 131:11–19

    Article  Google Scholar 

  • Egnér H, Riehm H, Domingo W (1960) Untersuchungen iber die chemische Bodenanalyse als Grundlag fur die Beurteilunger des Nahrstoffzustandes der Boden. II. Chemische Extractionsmethoden zur Phosphor, und Kalium-bestimmung. Kunglila Lantbrukshögskolans Annaler 26:199–215

    Google Scholar 

  • Eichhorn M, Paris P, Herzog F, Incoll L, Liagre F, Mantzanas K, Mayus M, Moreno G, Papanastasis V, Pilbeam D, Pisanelli A, Dupraz C (2006) Silvoarable systems in Europe—past, present and future prospects. Agrofor Syst 67:29–50

    Article  Google Scholar 

  • Freixo A, Machado P, Guimarães C, Silva C, Fadigas F (2002) Estoques de carbono e nitrogênio e distribuição de frações orgânicas de Latossolo do Cerrado sob diferentes sistemas de cultivo. R Bras Ci Solo 26:425–434

    Article  CAS  Google Scholar 

  • Ghani A, Dexter M, Perrott K (2003) Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol Biochem 35:1231–1243

    Article  CAS  Google Scholar 

  • Haynes R (1980) Influence of soil management practice on the orchard agroecosystem. Agro-ecosystems 6:3–32

    Article  Google Scholar 

  • Haynes R (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268

    Article  CAS  Google Scholar 

  • Hernández A, Lacasta C, Pastor J (2005) Effects of different management practices on soil conservation and soil water in a rainfed olive orchard. Agric Water Manag 77:232–248

    Article  Google Scholar 

  • Houba V, Van Der Lee J, Novozamsky I, Walinga I (1986) Soil and plant analysis procedures. Wageningen University, Wageningen

    Google Scholar 

  • IPMA (2013) Normais Climatológicos 1971–2000 de Bragança. Instituto de Meteorologia, IP Portugal. http://www.meteo.pt/pt/oclima/clima.normais/003/. Accessed 11 Mar 2013

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10

    Article  Google Scholar 

  • Lal R (2003) Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degrad Dev 14:309–322

    Article  Google Scholar 

  • Lalitha M, Kumar P (2016) Soil carbon fractions influenced by temperature sensitivity and land use management. Agrofor Syst 90:961–964

    Article  Google Scholar 

  • Maroco J (2003) Análise Estatística, com utilização do SPSS. Edições Sílabo, Lisboa

    Google Scholar 

  • Martins A, Raimundo F, Borges O, Linhares I, Sousa V, Coutinho J, Gomes- Laranjo J, Madeira M (2010) Effects of soil management practices and irrigation on plant water relations and productivity of chestnut stands under Mediterranean conditions. Plant Soil 327:57–70

    Article  CAS  Google Scholar 

  • Martins A, Marques G, Borges O, Portela E, Lousada J, Raimundo F, Madeira M (2011) Management of chestnut plantations for a multifunctional land use under Mediterranean conditions: effects on productivity and sustainability. Agrofor Syst 81:175–189

    Article  Google Scholar 

  • Melero S, López-Garrido R, Murillo J, Moreno F (2009) Conservation tillage: short-and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil Tillage Res 104:292–298

    Article  Google Scholar 

  • Moreno B, Garcia-Rodriguez S, Cañizares R, Castro J, Benitez E (2009) Rainfed olive farming in south-eastern Spain: long-term effect of soil management on biological indicators of soil quality. Agric Ecosyst Environ 131:333–339

    Article  Google Scholar 

  • Nair P, Nair V, Kumar B, Showalter J (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Nogueira L, Silva D, Pereira M, Gaia-Gomes J, Silva E (2016) Biological properties and organic matter dynamics of soil in pasture and natural regeneration areas in the Atlantic forest biome. Rev Bras Cienc Solo 40:e0150366

    Article  Google Scholar 

  • Nyamadzawo G, Nyamangara J, Nyamugafata P, Muzulu A (2009) Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil Tillage Res 102:151–157

    Article  Google Scholar 

  • Oyonarte C, Mingorance M, Durante P, Piñero G, Barahona E (2007) Indicators of change in the organic matter in arid soils. Sci Total Environ 378:133–137

    Article  CAS  PubMed  Google Scholar 

  • Paudel B, Udawatta R, Anderson S (2011) Agroforestry and grass buffer effects on soil quality parameters for grazed pasture ad row-crop systems. Appl Soil Ecol 48:125–132

    Article  Google Scholar 

  • Raimundo F (2003) Sistemas de mobilização do solo em soutos. Influência na produtividade de castanha e nas características físicas e químicas do solo. PhD dissertation. Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal

  • Ramesh T, Manjaiah K, Mohopatra K, Rajasekar K, Ngachan S (2015) Assessment of soil organic carbon stocks and fractions under different agroforestry systems in subtropical hill agroecosystems of north-east India. Agrofor Syst 89:677–690

    Article  Google Scholar 

  • Six J, Feller C, Denef K, Ogle S, Sá J, Albrecht A (2002) Soil organic matter, biota and agreggation in temperate and tropical soils; effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Stamps W, Linit M (1999) The problem of experimental design in temperate agroforestry. Agrofor Syst 76:187–196

    Google Scholar 

  • Thomas G (1982) Exchangeable cations. In: Page A, Miller R, Keeney D (eds) Methods of soil analysis. Part 2 agron 9, 2nd edn. ASA, SSSA, Madison, pp 159–165

    Google Scholar 

  • Weerasekara C, Udawatta R, Jose S, Kremer R, Weerasekara C (2016) Soil quality differences in a row-crop watershed with agroforestry and grass buffers. Agrofor Syst 90:829–838

    Article  Google Scholar 

  • Weil R, Islam K, Stine M, Gruver J, Samson-Liebig S (2003) Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am J Altern Agric 18:3–17

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by: European Investment Funds by FEDER/COMPETE/POCI—Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT—Portuguese Foundation for Science and Technology, under the Project UID/AGR/04033. The authors thank the staff of the Soil Laboratory of the Instituto Superior de Agronomia (Universidade de Lisboa) for the processing of some of the analyses. Mr. Lindolfo Afonso, landowner of the farm where the orchards are located, is acknowledged for the provided facilities to the study development and José Carlos Rego for assistance in field and laboratory activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, O., Raimundo, F., Coutinho, J. et al. Carbon fractions as indicators of organic matter dynamics in chestnut orchards under different soil management practices. Agroforest Syst 92, 301–310 (2018). https://doi.org/10.1007/s10457-017-0088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0088-3

Keywords

Navigation