Skip to main content
Log in

Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Osteoprotegerin (OPG) a soluble tumor necrosis factor receptor family molecule protects endothelial cells from apoptosis in vitro and promotes neovascularization in vivo. In this study, we assessed the role of OPG and its ligands, receptor activator of nuclear factor-κB ligand (RANKL) and tumor necrosis factor-related apoptosis inducing ligand (TRAIL), in microvessel formation using the rat aortic ring model of angiogenesis. OPG was found to promote a twofold increase in angiogenic sprouting in the aortic ring model, and this effect was inhibited by pre-incubation with a fivefold molar excess of either RANKL or TRAIL. While TRAIL had no effect upon angiogenesis on its own, RANKL was found to potently inhibit basal and vascular endothelial growth factor-induced angiogenesis. OPG increased the rate of endothelial cell proliferation in sprouting microvessels; in contrast, RANKL inhibited proliferation. RANKL was found to induce endothelial apoptosis at days 6, 7, and 10 in the aortic ring model and after incubation with human umbilical vein endothelial cells (HUVECs). Signaling studies showed that OPG induced ERK1/2 and Akt phosphorylation in HUVECs while RANKL had no effect. Our results indicate that OPG is a positive regulator of microvessel formation, while RANKL is an angiogenic inhibitor due to effects on regulation of endothelial cell proliferation, apoptosis, and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gasparini G, Longo R, Toi M, Ferrara N (2005) Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol 2:562–577. doi:10.1038/ncponc0342

    Article  PubMed  CAS  Google Scholar 

  2. Annex BH, Simons M (2005) Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res 65:649–655. doi:10.1016/j.cardiores.2004.09.004

    Article  PubMed  CAS  Google Scholar 

  3. Patel ZS, Mikos AG (2004) Angiogenesis with biomaterial-based drug- and cell-delivery systems. J Biomater Sci Polym Ed 15:701–726. doi:10.1163/156856204774196117

    Article  PubMed  CAS  Google Scholar 

  4. Ratner BD (2002) Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release 78:211–218. doi:10.1016/S0168-3659(01)00502-8

    Article  PubMed  CAS  Google Scholar 

  5. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319. doi:10.1016/S0092-8674(00)80209-3

    Article  PubMed  CAS  Google Scholar 

  6. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142. doi:10.1006/bbrc.1997.6603

    Article  PubMed  CAS  Google Scholar 

  7. Hofbauer LC (1999) Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur J Endocrinol 141:195–210. doi:10.1530/eje.0.1410195

    Article  PubMed  CAS  Google Scholar 

  8. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15:2–12. doi:10.1359/jbmr.2000.15.1.2

    Article  PubMed  CAS  Google Scholar 

  9. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176. doi:10.1016/S0092-8674(00)81569-X

    Article  PubMed  CAS  Google Scholar 

  10. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN et al (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194. doi:10.1074/jbc.272.40.25190

    Article  PubMed  CAS  Google Scholar 

  11. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390:175–179. doi:10.1038/36593

    Article  PubMed  CAS  Google Scholar 

  12. Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R (2000) The complexity of TNF-related apoptosis-inducing ligand. Ann N Y Acad Sci 926:52–63

    Article  PubMed  CAS  Google Scholar 

  13. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, Dul E, Appelbaum ER, Eichman C, DiPrinzio R et al (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367. doi:10.1074/jbc.273.23.14363

    Article  PubMed  CAS  Google Scholar 

  14. Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK, Schwartz SM, Pascual V, Hood LE, Clark EA (1998) OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 161:6113–6121

    PubMed  CAS  Google Scholar 

  15. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602. doi:10.1073/pnas.95.7.3597

    Article  PubMed  CAS  Google Scholar 

  16. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268. doi:10.1101/gad.12.9.1260

    Article  PubMed  CAS  Google Scholar 

  17. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615. doi:10.1006/bbrc.1998.8697

    Article  PubMed  CAS  Google Scholar 

  18. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323. doi:10.1038/16852

    Article  PubMed  CAS  Google Scholar 

  19. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13:2412–2424. doi:10.1101/gad.13.18.2412

    Article  PubMed  CAS  Google Scholar 

  20. Zannettino AC, Holding CA, Diamond P, Atkins GJ, Kostakis P, Farrugia A, Gamble J, To LB, Findlay DM, Haynes DR (2005) Osteoprotegerin (OPG) is localized to the Weibel–Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol 204:714–723. doi:10.1002/jcp.20354

    Article  PubMed  CAS  Google Scholar 

  21. Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM, Averill M, Schwartz SM, Giachelli CM, Rosenfeld ME (2006) Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE−/− mice. Arterioscler Thromb Vasc Biol 26:2117–2124. doi:10.1161/01.ATV.0000236428.91125.e6

    Article  PubMed  CAS  Google Scholar 

  22. Morony S, Tintut Y, Zhang Z, Cattley RC, Van G, Dwyer D, Stolina M, Kostenuik PJ, Demer LL (2008) Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(−/−) mice. Circulation 117:411–420. doi:10.1161/CIRCULATIONAHA.107.707380

    Article  PubMed  CAS  Google Scholar 

  23. Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, Santer P, Smolen J, Poewe W, Willeit J (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:2175–2180. doi:10.1161/01.CIR.0000127957.43874.BB

    Article  PubMed  CAS  Google Scholar 

  24. Schoppet M, Sattler AM, Schaefer JR, Hofbauer LC (2006) Osteoprotegerin (OPG) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels in atherosclerosis. Atherosclerosis 184:446–447. doi:10.1016/j.atherosclerosis.2005.10.028

    Article  PubMed  CAS  Google Scholar 

  25. Soufi M, Schoppet M, Sattler AM, Herzum M, Maisch B, Hofbauer LC, Schaefer JR (2004) Osteoprotegerin gene polymorphisms in men with coronary artery disease. J Clin Endocrinol Metab 89:3764–3768. doi:10.1210/jc.2003-032054

    Article  PubMed  CAS  Google Scholar 

  26. Ziegler S, Kudlacek S, Luger A, Minar E (2005) Osteoprotegerin plasma concentrations correlate with severity of peripheral artery disease. Atherosclerosis 182:175–180

    Article  PubMed  CAS  Google Scholar 

  27. Malyankar UM, Scatena M, Suchland KL, Yun TJ, Clark EA, Giachelli CM (2000) Osteoprotegerin is an alpha vbeta 3-induced, NF-kappa B-dependent survival factor for endothelial cells. J Biol Chem 275:20959–20962. doi:10.1074/jbc.C000290200

    Article  PubMed  CAS  Google Scholar 

  28. Scatena M, Giachelli C (2002) The alpha(v)beta3 integrin, NF-kappaB, osteoprotegerin endothelial cell survival pathway. Potential role in angiogenesis. Trends Cardiovasc Med 12:83–88. doi:10.1016/S1050-1738(01)00151-7

    Article  PubMed  CAS  Google Scholar 

  29. Pritzker LB, Scatena M, Giachelli CM (2004) The role of osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand in human microvascular endothelial cell survival. Mol Biol Cell 15:2834–2841. doi:10.1091/mbc.E04-01-0059

    Article  PubMed  CAS  Google Scholar 

  30. Myers DE, Collier FM, Minkin C, Wang H, Holloway WR, Malakellis M, Nicholson GC (1999) Expression of functional RANK on mature rat and human osteoclasts. FEBS Lett 463:295–300. doi:10.1016/S0014-5793(99)01650-6

    Article  PubMed  CAS  Google Scholar 

  31. Zhu WH, Nicosia RF (2002) The thin prep rat aortic ring assay: a modified method for the characterization of angiogenesis in whole mounts. Angiogenesis 5:81–86. doi:10.1023/A:1021509004829

    Article  PubMed  CAS  Google Scholar 

  32. Zhu WH, MacIntyre A, Nicosia RF (2002) Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting. Am J Pathol 161:823–830

    PubMed  CAS  Google Scholar 

  33. Cross SS, Yang Z, Brown NJ, Balasubramanian SP, Evans CA, Woodward JK, Neville-Webbe HL, Lippitt JM, Reed MW, Coleman RE et al (2006) Osteoprotegerin (OPG)—a potential new role in the regulation of endothelial cell phenotype and tumour angiogenesis? Int J Cancer 118:1901–1908. doi:10.1002/ijc.21606

    Article  PubMed  CAS  Google Scholar 

  34. Bharti AC, Aggarwal BB (2004) Ranking the role of RANK ligand in apoptosis. Apoptosis 9:677–690. doi:10.1023/B:APPT.0000045780.10463.c6

    Article  PubMed  CAS  Google Scholar 

  35. Bharti AC, Takada Y, Shishodia S, Aggarwal BB (2004) Evidence that receptor activator of nuclear factor (NF)-kappaB ligand can suppress cell proliferation and induce apoptosis through activation of a NF-kappaB-independent and TRAF6-dependent mechanism. J Biol Chem 279:6065–6076. doi:10.1074/jbc.M308062200

    Article  PubMed  CAS  Google Scholar 

  36. Kim HH, Shin HS, Kwak HJ, Ahn KY, Kim JH, Lee HJ, Lee MS, Lee ZH, Koh GY (2003) RANKL regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. FASEB J 17:2163–2165

    PubMed  CAS  Google Scholar 

  37. Kim YM, Lee YM, Kim HS, Kim JD, Choi Y, Kim KW, Lee SY, Kwon YG (2002) TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem 277:6799–6805. doi:10.1074/jbc.M109434200

    Article  PubMed  CAS  Google Scholar 

  38. Alladina SJ, Song JH, Davidge ST, Hao C, Easton AS (2005) TRAIL-induced apoptosis in human vascular endothelium is regulated by phosphatidylinositol 3-kinase/Akt through the short form of cellular FLIP and Bcl-2. J Vasc Res 42:337–347. doi:10.1159/000086599

    Article  PubMed  CAS  Google Scholar 

  39. Cantarella G, Risuglia N, Dell’eva R, Lempereur L, Albini A, Pennisi G, Scoto GM, Noonan DN, Bernardini R (2006) TRAIL inhibits angiogenesis stimulated by VEGF expression in human glioblastoma cells. Br J Cancer 94:1428–1435. doi:10.1038/sj.bjc.6603092

    Article  PubMed  CAS  Google Scholar 

  40. Li JH, Kirkiles-Smith NC, McNiff JM, Pober JS (2003) TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunol 171:1526–1533

    PubMed  CAS  Google Scholar 

  41. Secchiero P, Gonelli A, Carnevale E, Corallini F, Rizzardi C, Zacchigna S, Melato M, Zauli G (2004) Evidence for a proangiogenic activity of TNF-related apoptosis-inducing ligand. Neoplasia 6:364–373. doi:10.1593/neo.03421

    Article  PubMed  CAS  Google Scholar 

  42. Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D, Zauli G (2003) TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107:2250–2256. doi:10.1161/01.CIR.0000062702.60708.C4

    Article  PubMed  Google Scholar 

  43. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40. doi:10.1373/49.1.32

    Article  PubMed  CAS  Google Scholar 

  44. Nicosia RF, Lin YJ, Hazelton D, Qian X (1997) Endogenous regulation of angiogenesis in the rat aorta model. Role of vascular endothelial growth factor. Am J Pathol 151:1379–1386

    PubMed  CAS  Google Scholar 

  45. Villaschi S, Nicosia RF (1993) Angiogenic role of endogenous basic fibroblast growth factor released by rat aorta after injury. Am J Pathol 143:181–190

    PubMed  CAS  Google Scholar 

  46. Ferrari G, Pintucci G, Seghezzi G, Hyman K, Galloway AC, Mignatti P (2006) VEGF, a prosurvival factor, acts in concert with TGF-beta1 to induce endothelial cell apoptosis. Proc Natl Acad Sci USA 103:17260–17265. doi:10.1073/pnas.0605556103

    Article  PubMed  CAS  Google Scholar 

  47. Segura I, Serrano A, De Buitrago GG, Gonzalez MA, Abad JL, Claveria C, Gomez L, Bernad A, Martinez AC, Riese HH (2002) Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J 16:833–841. doi:10.1096/fj.01-0819com

    Article  PubMed  CAS  Google Scholar 

  48. Fierlbeck W, Liu A, Coyle R, Ballermann BJ (2003) Endothelial cell apoptosis during glomerular capillary lumen formation in vivo. J Am Soc Nephrol 14:1349–1354. doi:10.1097/01.ASN.0000061779.70530.06

    Article  PubMed  CAS  Google Scholar 

  49. Haynes DR, Barg E, Crotti TN, Holding C, Weedon H, Atkins GJ, Zannetino A, Ahern MJ, Coleman M, Roberts-Thomson PJ et al (2003) Osteoprotegerin expression in synovial tissue from patients with rheumatoid arthritis, spondyloarthropathies and osteoarthritis and normal controls. Rheumatology (Oxford) 42:123–134. doi:10.1093/rheumatology/keg047

    Article  CAS  Google Scholar 

  50. Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, Osdoby P (2001) Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem 276:20659–20672. doi:10.1074/jbc.M010153200

    Article  PubMed  CAS  Google Scholar 

  51. Jono S, Ikari Y, Shioi A, Mori K, Miki T, Hara K, Nishizawa Y (2002) Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 106:1192–1194. doi:10.1161/01.CIR.0000031524.49139.29

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding support was received from the NSF (NSF-EEC-9872882 to CMG and MS) and from the NIH (NIH-HL-018645-29 to CMG and MS, NIH/NRSA-5T32GM065098 to JSM, and AHA 0655677Z to MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Scatena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGonigle, J.S., Giachelli, C.M. & Scatena, M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis 12, 35–46 (2009). https://doi.org/10.1007/s10456-008-9127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9127-z

Keywords

Navigation