Skip to main content
Log in

Harmonic morphisms from homogeneous Hadamard manifolds

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We present a new method for manufacturing complex-valued harmonic morphisms from a wide class of Riemannian Lie groups. This yields new solutions from an important family of homogeneous Hadamard manifolds. We also give a new method for constructing left-invariant foliations on a large class of Lie groups producing harmonic morphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Azencott R., Wilson E.: Homogeneous manifolds with negative curvature. I. Trans. Am. Math. Soc. 215, 323–362 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baird, P., Eells, J.: A Conservation Law for Harmonic Maps. Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics, vol. 894, pp. 1–25, Springer (1981)

  3. Baird P., Wood J.C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monograph 29. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  4. Berndt J., Tricerri F., Vanhecke L.: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Mathematics 1598. Springer, Berlin (1995)

    Google Scholar 

  5. Fuglede B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28, 107–144 (1978)

    MATH  MathSciNet  Google Scholar 

  6. Gudmundsson, S.: The bibliography of harmonic morphisms. http://www.matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html

  7. Gudmundsson S.: On the existence of harmonic morphisms from symmetric spaces of rank one. Manuscr. Math. 93, 421–433 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gudmundsson S., Svensson M.: Harmonic morphisms from the Grassmannians and their non-compact duals. Ann. Global Anal. Geom. 30, 313–333 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gudmundsson S., Svensson M.: Harmonic morphisms from solvable Lie groups. Math. Proc. Camb. Philos. Soc. 147, 389–408 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gudmundsson, S., Svensson, M.: On the existence of harmonic morphisms from three-dimensional Lie groups. Preprint (2010)

  11. Heintze E.: On homogeneous manifolds of negative curvature. Math. Ann. 211, 23–34 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19, 215–229 (1979)

    MATH  MathSciNet  Google Scholar 

  13. Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129, 1–60 (1989)

    Article  MathSciNet  Google Scholar 

  14. Svensson, V.: Curvatures of Lie groups. Bachelor’s thesis, Lund University. http://www.matematik.lu.se/matematiklu/personal/sigma/students/index.html (2009)

  15. Wolf J.: Homogenity and bounded isometries in manifolds of negative curvature. Ill. J. Math. 8, 14–18 (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigmundur Gudmundsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudmundsson, S., Nordström, J. Harmonic morphisms from homogeneous Hadamard manifolds. Ann Glob Anal Geom 39, 215–230 (2011). https://doi.org/10.1007/s10455-010-9229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-010-9229-x

Keywords

Mathematics Subject Classification (2000)