Abstract
We present a new method for manufacturing complex-valued harmonic morphisms from a wide class of Riemannian Lie groups. This yields new solutions from an important family of homogeneous Hadamard manifolds. We also give a new method for constructing left-invariant foliations on a large class of Lie groups producing harmonic morphisms.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Azencott R., Wilson E.: Homogeneous manifolds with negative curvature. I. Trans. Am. Math. Soc. 215, 323–362 (1976)
Baird, P., Eells, J.: A Conservation Law for Harmonic Maps. Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics, vol. 894, pp. 1–25, Springer (1981)
Baird P., Wood J.C.: Harmonic Morphisms Between Riemannian Manifolds. London Mathematical Society Monograph 29. Oxford University Press, Oxford (2003)
Berndt J., Tricerri F., Vanhecke L.: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces. Lecture Notes in Mathematics 1598. Springer, Berlin (1995)
Fuglede B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28, 107–144 (1978)
Gudmundsson, S.: The bibliography of harmonic morphisms. http://www.matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html
Gudmundsson S.: On the existence of harmonic morphisms from symmetric spaces of rank one. Manuscr. Math. 93, 421–433 (1997)
Gudmundsson S., Svensson M.: Harmonic morphisms from the Grassmannians and their non-compact duals. Ann. Global Anal. Geom. 30, 313–333 (2006)
Gudmundsson S., Svensson M.: Harmonic morphisms from solvable Lie groups. Math. Proc. Camb. Philos. Soc. 147, 389–408 (2009)
Gudmundsson, S., Svensson, M.: On the existence of harmonic morphisms from three-dimensional Lie groups. Preprint (2010)
Heintze E.: On homogeneous manifolds of negative curvature. Math. Ann. 211, 23–34 (1974)
Ishihara T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19, 215–229 (1979)
Pansu P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. Math. 129, 1–60 (1989)
Svensson, V.: Curvatures of Lie groups. Bachelor’s thesis, Lund University. http://www.matematik.lu.se/matematiklu/personal/sigma/students/index.html (2009)
Wolf J.: Homogenity and bounded isometries in manifolds of negative curvature. Ill. J. Math. 8, 14–18 (1964)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gudmundsson, S., Nordström, J. Harmonic morphisms from homogeneous Hadamard manifolds. Ann Glob Anal Geom 39, 215–230 (2011). https://doi.org/10.1007/s10455-010-9229-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10455-010-9229-x