Skip to main content
Log in

Live oak pollen as a source of atmospheric particles

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Pollen grains are released from plants and rupture, releasing pollen grain fragments referred to as subpollen particles (SPPs). This study is a laboratory evaluation of live oak, Quercus virginiana, to determine the environmental conditions needed to emit SPPs and measure the concentration of SPPs produced. To represent conventional SPP release, live oak branches were exposed to high relative humidity (> 95%), followed by reduced relative humidity (73.5%-76.3%) and wind (up to 1.8 m s−1). In contrast, wind-driven SPP release experiments were conducted by exposing branches to constant relative humidity while cycling fans used to simulate winds. Wind-driven experiments produced maximum SPP concentrations as high as 3.3 × 102 ± 2.7 × 102 SPPs per cm3. The maximum SPP emissions during conventional SPP release experiments were as high as 7.3 × 101 ± 3.4 × 101 SPPs per cm3. The total number of SPPs emitted during conventional SPP release experiments was not significantly different from the SPP emissions during wind-driven SPP release experiments at a 5% significance level. The concentration of SPPs generated from pollen grains was used to calculate SPP emission factors. SPP emission factors were determined to be between 1.6 × 104 and 9.0 × 104 SPPs per pollen grain and between 4.7 × 1012 and 2.2 × 1015 SPPs per m2. These results indicate that SPPs represent a significant source of cloud-forming aerosol and have the ability to impact respiratory health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderegg, W. R., Abatzoglou, J. T., Anderegg, L. D., Bielory, L., Kinney, P. L., & Ziska, L. (2021). Anthropogenic climate change is worsening North American pollen seasons. Proceedings of National Academy of Sciences, 118(7), e2013284118.

    Article  CAS  Google Scholar 

  • Anenberg, S. C., Weinberger, K. R., Roman, H., Neumann, J. E., Crimmins, A., Fann, N., Martinich, J., & Kinney, P. L. (2017). Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. GeoHealth, 1(3), 80–92.

    Article  Google Scholar 

  • Bernstein, D. I., Würtzen, P. A., DuBuske, L., Blaiss, M. S., Ellis, A. K., Weber, R. W., & Nolte, H. (2021). Allergy to oak pollen in North America. Allergy and Asthma Proceedings, 42, 43–54.

    Article  CAS  Google Scholar 

  • Burkart, J., Gratzl, J., Seifried, T. M., Bieber, P., & Grothe, H. (2021). Subpollen particles (SPP) of birch as carriers of ice nucleating macromolecules. Biogeosciences Discuss, 2021, 1–15. https://doi.org/10.5194/bg-2021-8

    Article  Google Scholar 

  • Buters, J., Prank, M., Sofiev, M., Pusch, G., Albertini, R., Annesi-Maesano, I., Antunes, C., Behrendt, H., Berger, U., & Brandao, R. (2015). Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. Journal of Allergy and Clinical; Immunology, 136(1), 87-95.e6.

    Article  CAS  Google Scholar 

  • Buters, J. T. M., Thibaudon, M., Smith, M., Kennedy, R., Rantio-Lehtimaki, A., Albertini, R., Reese, G., Weber, B., Galan, C., Brandao, R., Antunes, C. M., Jager, S., Berger, U., Celenk, S., Grewling, L., Jackowiak, B., Sauliene, I., Weichenmeier, I., Pusch, G., … Grp, H. W. (2012). Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study [Article]. Atmospheric Environment, 55, 496–505. https://doi.org/10.1016/j.atmosenv.2012.01.054

    Article  CAS  Google Scholar 

  • Cecchi, L., Scala, E., Caronni, S., Citterio, S., & Asero, R. (2021). Allergenicity at component level of sub-pollen particles from different sources obtained by osmolar shock: A molecular approach to thunderstorm-related asthma outbreaks [Article]. Clinical and Experimental Allergy, 51(2), 253–261. https://doi.org/10.1111/cea.13764

    Article  CAS  Google Scholar 

  • Crawley, M., & Akhteruzzaman, M. (1988). Individual variation in the phenology of oak trees and its consequences for herbivorous insects. Functional Ecology, 409–415.

  • D’Amato, G., Annesi Maesano, I., Molino, A., Vitale, C., & D’Amato, M. (2017). Thunderstorm-related asthma attacks. The Journal of Allergy and Clinical Immunology, 139(6), 1786–1787.

    Article  Google Scholar 

  • D’Amato, G., Annesi-Maesano, I., Cecchi, L., & D’Amato, M. (2019). Latest news on relationship between thunderstorms and respiratory allergy, severe asthma, and deaths for asthma. Allergy, 74(1), 9–11. https://doi.org/10.1111/all.13616

    Article  Google Scholar 

  • D’Amato, G., Chong-Neto, H. J., Ortega, O. P. M., Vitale, C., Ansotegui, I., Rosario, N., Haathela, T., Galan, C., Pawankar, R., Murrieta, M., Cecchi, L., Bergmann, C., Ridolo, E., Ramon, G., Diaz, S. G., D’Amato, M., & Annesi-Maesano, I. (2020). The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens [Review]. Allergy, 75(9), 2219–2228. https://doi.org/10.1111/all.14476

    Article  CAS  Google Scholar 

  • Damialis, A., Traidl-Hoffmann, C., & Treudler, R. (2019). Climate change and pollen allergies. In R. M. Melissa, S. Jutta, K. Horst, N. I. Katherine, & B. Aletta (Eds.), Biodiversity and Health in the Face of Climate Change (pp. 47–66). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Davies, J., Thien, F., & Hew, M. (2018). Thunderstorm asthma: controlling (deadly) grass pollen allergy. Bmj, 360(k432), 431–432.

    Google Scholar 

  • Davis, M. B., & Brubaker, L. B. (1973). Differential sedimentation of pollen grains in lakes 1. Limnology and Oceanography, 18(4), 635–646.

    Article  Google Scholar 

  • DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M., Eidhammer, T., & Rogers, D. (2010). Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107(25), 11217–11222.

    Article  CAS  Google Scholar 

  • Deng, Y., Kagami, S., Ogawa, S., Kawana, K., Nakayama, T., Kubodera, R., Adachi, K., Hussein, T., Miyazaki, Y., & Mochida, M. (2018). Hygroscopicity of organic aerosols and their contributions to CCN concentrations over a midlatitude forest in Japan. Journal of Geophysical Research: Atmospheres, 123(17), 9703–9723.

    Article  Google Scholar 

  • Despres, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G., Frohlich-Nowoisky, J., Elbert, W., Andreae, M. O., Poschl, U., & Jaenicke, R. (2012). Primary biological aerosol particles in the atmosphere: a review [Review]. Tellus Series B-Chemical and Physical Meteorology., 64(58), 15598. https://doi.org/10.3402/tellusb.v64i0.15598

    Article  Google Scholar 

  • Eisikowitch, D., & Woodell, S. R. (1975). Some aspects of pollination ecology of Armeria maritima (Mill) Willd in Britain. New Phytologist, 74(2), 307–322.

    Article  Google Scholar 

  • Emmerson, K. M., Silver, J. D., Thatcher, M., Wain, A., Jones, P. J., Dowdy, A., Newbigin, E. J., Picking, B. W., Choi, J., Ebert, E., & Bannister, T. (2021). Atmospheric modelling of grass pollen rupturing mechanisms for thunderstorm asthma prediction. PLoS ONE, 16(4), e0249488. https://doi.org/10.1371/journal.pone.0249488

    Article  CAS  Google Scholar 

  • Erbas, B., Jazayeri, M., Lambert, K. A., Katelaris, C. H., Prendergast, L. A., Tham, R., Parrodi, M. J., Davies, J., Newbigin, E., & Abramson, M. J. (2018). Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: A systematic review and meta-analysis. Allergy, 73(8), 1632–1641.

    Article  CAS  Google Scholar 

  • Fcin, B. T., & Kamin, P. B. (1962). A 10 year survey of the hay fever plants and important atmospheric allergens in the San Antonio, Texas, metropolitan area. Journal of Allergy, 33(2), 141–152.

    Article  Google Scholar 

  • Fernandez-Gonzalez, M., Gonzalez-Fernandez, E., Ribeiro, H., Abreu, I., & Rodriguez-Rajo, F. J. (2020). Pollen production of Quercusin the North-Western Iberian Peninsula and airborne pollen concentration trends during the last 27 years [Article]. Forests, 11(6), 702. https://doi.org/10.3390/f11060702

    Article  Google Scholar 

  • Ghasemifard, H., Ghada, W., Estrella, N., Lupke, M., Oteros, J., Traidl-Hoffmann, C., Damialis, A., Buters, J., & Menzel, A. (2020). High post-season Alnus pollen loads successfully identified as long-range transport of an alpine species [Article]. Atmospheric Environment., 231(11), 117453. https://doi.org/10.1016/j.atmosenv.2020.117453

    Article  CAS  Google Scholar 

  • Gomez-Casero, M. T., Hidalgo, P. J., Garcia-Mozo, H., Dominguez, E., & Galan, C. (2004). Pollen biology in four mediterranean Quercus species [Article]. Grana, 43(1), 22–30. https://doi.org/10.1080/00173130410018957

    Article  Google Scholar 

  • Grote, M., Valenta, R., & Reichelt, R. (2003). Abortive pollen germination: A mechanism of allergen release in birch, alder, and hazel revealed by immunogold electron microscopy. Journal of Allergy and Clinical Immunology, 111(5), 1017–1023.

    Article  Google Scholar 

  • Gute, E., & Abbatt, J. P. D. (2020). Ice nucleating behavior of different tree pollen in the immersion mode [Article]. Atmospheric Environment, 231, 117488. https://doi.org/10.1016/j.atmosenv.2020.117488

    Article  CAS  Google Scholar 

  • Hew, M., Lee, J., Susanto, N. H., Prasad, S., Bardin, P. G., Barnes, S., Ruane, L., Southcott, A. M., Gillman, A., & Young, A. (2019). The 2016 Melbourne thunderstorm asthma epidemic: Risk factors for severe attacks requiring hospital admission. Allergy, 74(1), 122–130.

    Article  Google Scholar 

  • Hjelmroos, M. (1992). Long-distance transport of Betula pollen grains and allergic symptoms. Aerobiologia, 8(2), 231–236.

    Article  Google Scholar 

  • Holding, D. R., & Streich, A. M. (2013). Plant Growth Processes: Transpiration, Photosynthesis, and Respiration. Lincoln: University of Nebraska Cooperative Extension.

    Google Scholar 

  • Hughes, D. D., Mampage, C. B., Jones, L. M., Liu, Z., & Stone, E. A. (2020). Characterization of atmospheric pollen fragments during springtime thunderstorms. Environmental Science & Technology Letters, 7(6), 409–414.

    Article  CAS  Google Scholar 

  • Jung, S., Zhao, F., & Menzel, A. (2021). Establishing the twig method for investigations on pollen characteristics of allergenic tree species. International Journal of Biometeorology, 65(11), 1983–1993.

    Article  Google Scholar 

  • Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., & Krämer, M. (2017). Overview of ice nucleating particles. Meteorological Monographs, 58(1), 1–33.

    Google Scholar 

  • Liang, Y., Gao, Y., Wang, G., Si, Z., Shen, X., & Duan, A. (2018). Luxury transpiration of winter wheat and its responses to deficit irrigation in North China Plain. Plant, Soil and Environment, 64(8), 361–366.

    Article  CAS  Google Scholar 

  • Lo, F., Bitz, C. M., Battisti, D. S., & Hess, J. J. (2019). Pollen calendars and maps of allergenic pollen in North America. Aerobiologia, 35(4), 613–633.

    Article  Google Scholar 

  • Marks, G. B., & Bush, R. K. (2007). It’s blowing in the wind: New insights into thunderstorm-related asthma. Journal of Allergy and Clinical Immunology, 120(3), 530–532.

    Article  Google Scholar 

  • Marks, G., Colquhoun, J., Girgis, S., Koski, M. H., Treloar, A., Hansen, P., Downs, S., & Car, N. (2001). Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax, 56(6), 468–471.

    Article  CAS  Google Scholar 

  • Marselle, M. R., Stadler, J., Korn, H., Irvine, K. N., & Bonn, A. (2019). Biodiversity and Health in the Face of Climate Change. Cham: Springer Nature.

    Book  Google Scholar 

  • Miguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., & Flagan, R. C. (2006). Meteorological influences on respirable fragment release from Chinese elm pollen [Article]. Aerosol Science and Technology, 40(9), 690–696. https://doi.org/10.1080/02786820600798869

    Article  CAS  Google Scholar 

  • Mikhailov, E. F., Ivanova, O. A., Nebosko, E. Y., Vlasenko, S. S., & Ryshkevich, T. I. (2019). Subpollen particles as atmospheric cloud condensation nuclei [Article]. Izvestiya Atmospheric and Oceanic Physics, 55(4), 357–364. https://doi.org/10.1134/s000143381904008x

    Article  Google Scholar 

  • Osborne, N. J., Alcock, I., Wheeler, B. W., Hajat, S., Sarran, C., Clewlow, Y., McInnes, R. N., Hemming, D., White, M., & Vardoulakis, S. (2017). Pollen exposure and hospitalization due to asthma exacerbations: Daily time series in a European city. International Journal of Biometeorology, 61(10), 1837–1848.

    Article  Google Scholar 

  • Pazmandi, K., Kumar, B. V., Szabo, K., Boldogh, I., Szoor, A., Vereb, G., Veres, A., Lanyi, A., Rajnavolgyi, E., & Bacsi, A. (2012). Ragweed subpollen particles of respirable size activate human dendritic cells. PLoS ONE, 7(12), e52085.

    Article  CAS  Google Scholar 

  • Phalen, R. F., & Phalen, R. N. (2013). Introduction to Air Pollution Science. A Public Health Perspective. Jones & Bartlett Learning.

    Google Scholar 

  • Polgar, C., Gallinat, A., & Primack, R. B. (2014). Drivers of leaf-out phenology and their implications for species invasions: Insights from T horeau’s C oncord. New Phytologist, 202(1), 106–115.

    Article  Google Scholar 

  • Rogers, D. C., DeMott, P. J., Kreidenweis, S. M., & Chen, Y. (1998). Measurements of ice nucleating aerosols during success. Geophysical Research Letters, 25(9), 1383–1386.

    Article  CAS  Google Scholar 

  • Schäppi, G. F., Suphioglu, C., Taylor, P. E., & Knox, R. B. (1997). Concentrations of the major birch tree allergen Bet v1 in pollen and respirable fine particles in the atmosphere. Journal of Allergy and Clinical Immunology, 100(5), 656–661.

    Article  Google Scholar 

  • Schueler, S., & Schlünzen, K. H. (2006). Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environmental Modeling & Assessment, 11(3), 179–194.

    Article  Google Scholar 

  • Shen, Y., & Pei, H. (2019). Water Conservation for Sustainable Agriculture (pp. 1–11). Science, Technology, and Society.

    Google Scholar 

  • Sihto, S.-L., Mikkilä, J., Vanhanen, J., Ehn, M., Liao, L., Lehtipalo, K., Aalto, P., Duplissy, J., Petäjä, T., & Kerminen, V.-M. (2011). Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 11(24), 13269–13285.

    Article  CAS  Google Scholar 

  • Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimaki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study [Article]. International Journal of Biometeorology, 50(6), 392–402. https://doi.org/10.1007/s00484-006-0027-x

    Article  CAS  Google Scholar 

  • Sønsteby, A., & Heide, O. M. (2014). Chilling requirements of contrasting black currant (Ribes nigrum L.) cultivars and the induction of secondary bud dormancy. Scientia Horticulturae, 179, 256–265.

    Article  Google Scholar 

  • Steiner, A. L., Brooks, S. D., Deng, C. H., Thornton, D. C. O., Pendleton, M. W., & Bryant, V. (2015). Pollen as atmospheric cloud condensation nuclei [Article]. Geophysical Research Letters, 42(9), 3596–3602. https://doi.org/10.1002/2015gl064060

    Article  CAS  Google Scholar 

  • Stone, E. A., Mampage, C. B. A., Hughes, D. D., & Jones, L. M. (2021). Airborne sub-pollen particles from rupturing giant ragweed pollen. Aerobiologia. https://doi.org/10.1007/s10453-021-09702-x

    Article  Google Scholar 

  • Suphioglu, C., Singh, M. B., Taylor, P., Bellomo, R., Holmes, P., Puy, R., & Knox, R. B. (1992). Mechanism of grass-pollen-induced asthma [Article]. Lancet, 339(8793), 569–572. https://doi.org/10.1016/0140-6736(92)90864-y

    Article  CAS  Google Scholar 

  • Szczepanek, K., Myszkowska, D., Worobiec, E., Piotrowicz, K., Ziemianin, M., & Bielec-Bąkowska, Z. (2017). The long-range transport of Pinaceae pollen: An example in Kraków (southern Poland). Aerobiologia, 33(1), 109–125.

    Article  Google Scholar 

  • Taylor, P. E., Card, G., House, J., Dickinson, M. H., & Flagan, R. C. (2006). High-speed pollen release in the white mulberry tree, Morus alba L [Article]. Sexual Plant Reproduction, 19(1), 19–24. https://doi.org/10.1007/s00497-005-0018-9

    Article  Google Scholar 

  • Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., & Glovsky, M. M. (2004). Birch pollen rupture and the release of aerosols of respirable allergens [Article]. Clinical and Experimental Allergy, 34(10), 1591–1596. https://doi.org/10.1111/j.1365-2222.2004.02078.x

    Article  CAS  Google Scholar 

  • Taylor, P. E., Flagan, R. C., Valenta, R., & Glovsky, M. M. (2002). Release of allergens as respirable aerosols: A link between grass pollen and asthma [Article]. Journal of Allergy and Clinical Immunology, 109(1), 51–56. https://doi.org/10.1067/mai.2002.120759

    Article  Google Scholar 

  • Taylor, P. E., Jacobson, K. W., House, J. M., & Glovsky, M. M. (2007). Links between pollen, atopy and the asthma epidemic [Review]. International Archives of Allergy and Immunology, 144(2), 162–170. https://doi.org/10.1159/000103230

    Article  Google Scholar 

  • Taylor, P. E., & Jonsson, H. (2004). Thunderstorm asthma. Current Allergy and Asthma Reports, 4(5), 409–413.

    Article  Google Scholar 

  • Thien, F., Beggs, P. J., Csutoros, D., Darvall, J., Hew, M., Davies, J. M., Bardin, P. G., Bannister, T., Barnes, S., & Bellomo, R. (2018). The Melbourne epidemic thunderstorm asthma event 2016: An investigation of environmental triggers, effect on health services, and patient risk factors. The Lancet Planetary Health, 2(6), e255–e263.

    Article  Google Scholar 

  • Vaidyanathan, V., Miguel, A., Taylor, P., Flagan, R., & Glovsky, M. (2006). Effects of electric fields on pollen rupture. Journal of Allergy and Clinical Immunology, 117(2), S157.

    Article  Google Scholar 

  • Vali, G. (1996). Ice nucleation—A review. Nucleation and Atmospheric Aerosols 1996 (pp. 271–279). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Visez, N., Chassard, G., Azarkan, N., Naas, O., Senechal, H., Sutra, J. P., Poncet, P., & Choel, M. (2015). Wind-induced mechanical rupture of birch pollen: Potential implications for allergen dispersal [Article]. Journal of Aerosol Science, 89, 77–84. https://doi.org/10.1016/j.jaerosci.2015.07.005

    Article  CAS  Google Scholar 

  • Vitasse, Y., & Basler, D. (2014). Is the use of cuttings a good proxy to explore phenological responses of temperate forests in warming and photoperiod experiments? Tree Physiology, 34(2), 174–183.

    Article  Google Scholar 

  • Wodehouse, R. (1935). Pollen grains and worlds of different sizes. The Scientific Monthly, 40(1), 58–62.

    Google Scholar 

  • Wozniak, M. C., Solmon, F., & Steiner, A. L. (2018). Pollen rupture and its impact on precipitation in clean continental conditions [Article]. Geophysical Research Letters, 45(14), 7156–7164. https://doi.org/10.1029/2018gl077692

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Collaborative Grant #AGS-1821095. We thank our collaborators Allison Steiner and Yingxiao Zhang at the University of Michigan for insightful discussions. Elizabeth Mentis is thanked for assistance with editing and preparing manuscript for submission.

Funding

The funding was provided by National Science Foundation,#AGS-1821095,Sarah D. Brooks

Author information

Authors and Affiliations

Authors

Contributions

SDB conceived of the project. BNH and SDB contributed to the writing of the manuscript. Material preparation, data collection, and analysis were led by BNH with assistance from ANA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sarah D. Brooks.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendrickson, B.N., Alsante, A.N. & Brooks, S.D. Live oak pollen as a source of atmospheric particles. Aerobiologia 39, 51–67 (2023). https://doi.org/10.1007/s10453-022-09773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-022-09773-4

Keywords

Navigation