Skip to main content

Advertisement

Log in

Quantitative microbial risk assessment of bioaerosols from a manure application site

  • Original paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Bioaerosol concentrations and deposition were monitored at the edge of a dairy manure application site in northern New York State. Total bacteria, fecal indicator bacteria (Enterococcus spp. and Escherichia coli), and select bacterial pathogens (Salmonella spp., Campylobacter spp., and E. coli O157:H7) were measured in the manure and air by real-time quantitative PCR (qPCR). The 8-h average bacterial air concentration measured by liquid impingement following manure application was 7.89 × 105 copies m−3, one order of magnitude greater than mean background measurements (6.35 × 104 copies m−3; n = 6). Eight-hour ambient concentration of Enterococcus spp. was 1.54 × 104 copies m−3; E. coli and pathogens were less than their respective limits of detection. The measured deposition flux of bacteria was 1.08 × 103 copies m−2 s−1, corresponding to bulk deposition velocity of 0.15 cm s−1. Using inverse dispersion modeling with the US Environmental Protection Agency’s AERMOD, the emission of bacteria from the manure-amended field was estimated to be 1.27 × 105 copies m−2 s−1. AERMOD was also used to model downwind bioaerosol concentrations; the greatest modeled 8-h average downwind bacteria concentrations were 8.00 × 105 copies m−3 above background at 100 m and 3.95 × 103 copies m−3 above background at 1,000 m. Potential health risks associated with these bioaerosols were estimated by quantitative microbial risk assessment based on AERMOD results using measured pathogen concentrations in land-applied manure and emission rate estimates for total bacteria. Median risks of infection over an 8-h exposure period were 1:500 at 100 m and 1:100,000 at 1,000 m; peak risks (95th percentile) were 1:250 and 1:50,000, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adgate, J. L., & Ramachandran, G. (2007). Probabilistic models for characterizing aggregate and cumulative risk. In M. G. Robson & W. A. Toscano (Eds.), Risk assessment for environmental health (pp. 121–153). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143–169.

    CAS  Google Scholar 

  • An, H. R., Mainelis, G., & White, L. (2006). Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmospheric Environment, 40, 7924–7939.

    Article  CAS  Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.

    CAS  Google Scholar 

  • Ayra, S. P. (1999). Air pollution meteorology and dispersion. New York, NY: Oxford University Press.

    Google Scholar 

  • Baertsch, C., Paez-Rubio, T., Viau, E., & Peccia, J. (2007). Source tracking aerosols released from land-applied class B biosolids during high wind events. Applied and Environmental Microbiology, 73(14), 4522–4531.

    Article  CAS  Google Scholar 

  • Boutin, P., Torre, M., Serceau, R., & Rideau, P.-J. (1988). Atmospheric bacterial contamination from landspreading of animal wastes: Evaluation of the respiratory risk for people nearby. Journal of Agricultural Engineering Research, 39, 149–160.

    Article  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2006). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences USA, 104(1), 299–304.

    Article  Google Scholar 

  • Brooks, J. P., Gerba, C. P., & Pepper, I. L. (2004). Biological aerosol emission, fate, and transport from municipal and animal wastes. Journal of Residuals Science and Technology, 1(1), 15–28.

    Google Scholar 

  • Brooks, J. P., McLaughlin, M. R., Gerba, C. P., & Pepper, I. L. (2012). Land application of manure and class B biosolids: An occupational and public quantitative microbial risk assessment. Journal of Environmental Quality, 41(6), 2009–2023.

    Article  CAS  Google Scholar 

  • Brooks, J. P., Tanner, B. D., Gerba, C. P., Haas, C. N., & Pepper, I. L. (2005a). Estimation of bioaerosol risk of infection to residents adjacent to a land applied biosolids site using an empirically derived transport model. Journal of Applied Microbiology, 98, 397–405.

    Article  CAS  Google Scholar 

  • Brooks, J. P., Tanner, B. D., Josepheson, K. L., Gerba, C. P., Haas, C. N., & Pepper, I. L. (2005b). A national study on the residential impact of biological aerosols from the land application of biosolids. Journal of Applied Microbiology, 99(2), 310–322.

    Article  CAS  Google Scholar 

  • Buttner, M. P., Willeke, K., & Grinshpun, S. A. (2002). Sampling and analysis of airborne microorganisms. In C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, & L. D. Stetzenbach (Eds.), Manual of environmental microbiology (pp. 814–826). Washington, DC: ASM Press.

    Google Scholar 

  • Chang, C. W., Hwang, Y. H., Grinshpun, S. A., Macher, J. M., & Willeke, K. (1994). Evaluation of counting error due to colony masking in bioaerosol sampling. Applied and Environmental Microbiology, 60(10), 3732–3738.

    CAS  Google Scholar 

  • Chen, P., & Li, S. (2005). Real-time quantitative PCR with gene probe, fluorochrome and flow cytometry for microorganism analysis. Journal of Environmental Monitoring, 7, 257–262.

    Article  CAS  Google Scholar 

  • Chern, E. C., Siefring, S., Paar, J., Doolittle, M., & Haugland, R. A. (2011). Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes. Letters in Applied Microbiology, 52, 298–306.

    Article  CAS  Google Scholar 

  • Dowd, S. E., Gerba, C. P., Pepper, I. L., & Pillai, S. D. (2000). Bioaerosol transport modeling and risk assessment in relation to biosolid placement. Journal of Environmental Quality, 29, 343–348.

    Article  CAS  Google Scholar 

  • Dungan, R. S. (2010). Board-invited review: Fate and transport of bioaerosols associated with livestock operations and manures. Journal of Animal Science, 88, 3693–3706.

    Article  CAS  Google Scholar 

  • Dungan, R. S. (2012). Use of a culture-independent approach to characterize aerosolized bacteria near an open-freestall dairy operation. Environment International, 41(2012), 8–14.

    Article  CAS  Google Scholar 

  • Dungan, R. S., & Leytem, A. B. (2009). Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World Journal of Microbiology and Biotechnology, 25, 1505–1518.

    Article  Google Scholar 

  • Eisenberg, J. N. S., Moore, K., Soller, J. A., Eisenberg, D., & Colford, J. M. (2008). Microbial risk assessment framework for exposure to amended sludge projects. Environmental Health Perspectives, 116(6), 727–733.

    Article  Google Scholar 

  • Eisenberg, J. N. S., Soller, J. A., Scott, J., Eisenberg, D. M., & Colford, J. M. (2004). A dynamic model to assess microbial health risks associated with beneficial uses of biosolids. Risk Analysis, 24(1), 221–236.

    Article  Google Scholar 

  • Flesch, T. K., Harper, L. A., Powell, J. M., & Wilson, J. D. (2009). Inverse-dispersion calculation of ammonia emissions from Wisconsin dairy farms. Trans. ASABE, 52(1), 253–265.

    Article  CAS  Google Scholar 

  • Flesch, T. K., Wilson, J. D., Harper, L. A., & Crenna, B. P. (2005). Estimating gas emissions from a farm with an inverse-dispersion technique. Atmospheric Environment, 39, 4863–4874.

    Article  CAS  Google Scholar 

  • Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., & Sharpe, R. R. (2004). Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. Journal of Applied Meteorology, 43, 487–502.

    Article  Google Scholar 

  • Gerba, C. P., Castro-del Campo, N., Brooks, J. P., & Pepper, I. L. (2008). Exposure and risk assessment of Salmonella in recycled residuals. Water Science and Technology, 57(7), 1061–1065.

    Article  Google Scholar 

  • Gerba, C. P., & Smith, J. E. (2005). Sources of pathogenic microorganisms and their fate during land application of wastes. Journal of Environmental Quality, 34, 42–48.

    CAS  Google Scholar 

  • Gilchrist, M. J., Greko, C., Wallinga, D. B., Beran, G. W., Riley, D. G., & Throne, P. S. (2007). The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environmental Health Perspectives, 115(2), 313–316.

    Article  Google Scholar 

  • Haas, C. N., Rose, J. B., & Gerba, C. P. (1999). Quantitative microbial risk assessment. New York, NY: Wiley.

    Google Scholar 

  • Haugland, R. A., Siefring, S. C., Wymer, L. J., Brenner, K. P., & Dufour, A. P. (2005). Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Research, 39, 559–568.

    Article  CAS  Google Scholar 

  • Hobbs, P., Davies, D., Williams, J., Bakewell, H., & Smith, K. (2004). Measurement of pathogen transfer in aerosols following land application of manure. In Sustainable organic waste management for environmental protection and food safety, vol. II.: Proceedings of the 11th international conference of the FAO ESCORENA network on the recycling of agricultural, municipal and industrial residues in agriculture (RAMIRAN), 25–28. Murcia, Spain: Tipografía San Francisco.

  • Ibekwe, A. M., & Grieve, C. M. (2003). Detection and quantification of Escherichia coli O157:H7 in environmental samples by real-time PCR. Journal of Applied Microbiology, 94, 421–431.

    Article  CAS  Google Scholar 

  • Issartel, J.-P. (2005). Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation. Atmospheric Chemistry and Physics, 5, 249–273.

    Article  CAS  Google Scholar 

  • Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—A review. Science of the Total Environment, 326, 151–180.

    Article  CAS  Google Scholar 

  • Josephson, K. L., Gerba, C. P., & Pepper, I. L. (1993). Polymerase chain reaction detection of nonviable bacterial pathogens. Applied and Environment Microbiology, 59(10), 3513–3515.

    CAS  Google Scholar 

  • Kim, M., Thurston, J. A. & Hagen, L. J. (2007). Computational fluid dynamics (CFD) modeling to predict bioaerosol transport behavior during center pivot wastewater irrigation. ASABE Technical Paper No. 074063. St. Joseph, M.I.: ASABE.

  • Klappenbach, J. A., Saxman, P. R., Cole, J. R., & Schmidt, T. M. (2001). rrndb: The Ribosomal RNA operon copy number database. Nucleic Acids Research, 29(1), 181–184.

    Article  CAS  Google Scholar 

  • Kumar, A., & Bhat, A. (2008). Development of a spreadsheet for the study of air quality impact due to releases of bioaerosols. Environmental Progress, 27(1), 15–20.

    Article  CAS  Google Scholar 

  • Lee, Z. M., Bussema, C., & Schmidt, T. M. (2009). rrnDB: Documenting the number of rRNA and tRNA genes in bacteria and archea. Nucleic Acids Research, 37, D489–D493.

    Article  CAS  Google Scholar 

  • Ludwig, W., & Schleifer, K. H. (2000). How quantitative is quantitative PCR with respect to cell counts? Systematic and Applied Microbiology, 23, 556–562.

    Article  CAS  Google Scholar 

  • Lund, M., Nordentoft, S., Pedersen, K., & Madsen, M. (2004). Detection of Campylobacter spp. in chicken fecal samples by real-time PCR. Journal of Clinical Microbiology, 42(11), 5125–5132.

    Article  CAS  Google Scholar 

  • Malorny, B., Paccassoni, E., Fach, P., Bunge, C., Martin, A., & Helmuth, R. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Applied and Environment Microbiology, 70(12), 7046–7052.

    Article  CAS  Google Scholar 

  • Medema, G. J., Teunis, P. F. M., Havelaar, A. H., & Haas, C. N. (1996). Assessment of dose-response relationship of Campylobacter jejuni. International Journal of Food Microbiology, 30, 101–111.

    Article  CAS  Google Scholar 

  • Medema, G., Wullings, B., Roeleveld, P., & van der Kooij, D. (2004). Risk assessment of Legionella and enteric pathogens in sewage treatment works. Water Science and Technology, 4(2), 125–132.

    Google Scholar 

  • Millner, P. D. (2009). Bioaerosols associated with animal production operations. Bioresource technology, 100, 5379–5385.

    Article  CAS  Google Scholar 

  • Mohr, A. J. (2001). Fate and transport of microorganisms in the air. In C. J. Hurst, R. L. Crawford, G. R. Knudson, M. J. McInerney, & L. D. Stetzenbach (Eds.), Manual of environmental microbiology (pp. 827–838). Washington, DC: ASM Press.

    Google Scholar 

  • Murayama, M., Kakinuma, Y., Maeda, Y., Rao, J. R., Matsuda, M., Xu, J., et al. (2010). Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16SrRNA gene PCR and gene sequencing techniques. Ecotoxicology and Environmental Safety, 73, 443–447.

    Article  CAS  Google Scholar 

  • Nadkarni, M. A., Martin, F. E., Jacques, N. H., & Hunter, N. (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology, 148, 257–266.

    CAS  Google Scholar 

  • Nehme, B., Letourneau, V., Forster, R. J., Veillette, M., & Duchaine, C. (2008). Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect. Environmental Microbiology, 10(3), 665–675.

    Article  CAS  Google Scholar 

  • Nicholson, K. W. (1995). Physical Aspects of Bioaerosol Sampling and Deposition. In C. S. Cox & C. M. Wathes (Eds.), Bioaerosols Handbook (pp. 27–54). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Nicholson, F., Groves, S. J., & Chambers, B. J. (2005). Pathogen survival during livestock manure storage and following land application. Bioresource technology, 96, 135–143.

    Article  CAS  Google Scholar 

  • O’Shaughnessy, P. T., & Altmaier, R. (2011). Use of AERMOD to determine a hydrogen sulfide emission factor for swine operations by inverse modeling. Atmospheric Environment, 45, 4617–4625.

    Article  Google Scholar 

  • Office of Environmental Health Hazard Assessment (2012). Chapter 3: Daily breathing rates. In M. Rodriquez and G. V. Alexeeff (Eds.), Air toxics hot spots program risk assessment guidelines: Technical support document for exposure assessment and stochastic analysis. Oakland CA: California Environmental Protection Agency.

  • Opplinger, A., Charriere, N., Droz, P., & Rinsoz, T. (2008). Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Annals of Occupational Hygiene, 52(5), 405–412.

    Article  Google Scholar 

  • Pachepsky, Y. A., Sadeghi, A. M., Bradford, S. A., Shelton, D. R., Guber, A. K., & Dao, T. (2006). Transport and fate of manure-borne pathogens: Modeling perspective. Agricultural Water Management, 86, 81–92.

    Article  Google Scholar 

  • Paez-Rubio, T., Ramarui, A., Sommer, J., Xin, H., Anderson, J., & Peccia, J. (2007). Emission rates and characterization of aerosols produced during the spreading of dewatered class B biosolids. Environmental Science and Technology, 41, 3537–3544.

    Article  CAS  Google Scholar 

  • Parkin, R. T. (2007). Microbial Risk Assessment. In M. G. Robson & W. A. Toscano (Eds.), Risk assessment for environmental health (pp. 285–313). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Perelle, S., Dilasser, F., Grout, J., & Fach, P. (2004). Detection by 50-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases. Molecular and Cellular Probes, 18, 185–192.

    Article  CAS  Google Scholar 

  • Pillai, S. D. (2007). Bioaerosols from land applied biosolids: Issues and needs. Water Environment Research, 79(3), 270–278.

    Article  CAS  Google Scholar 

  • Rao, K. S. (2007). Source estimation methods for atmospheric dispersion. Atmospheric Environment, 41, 6764–6973.

    Google Scholar 

  • Regli, S., Rose, J. B., Haas, C. N., & Gerba, C. P. (1991). Modeling the risk from giardia and viruses in drinking water. Journal American Water Works Association, 83(11), 76–84.

    CAS  Google Scholar 

  • Rinsoz, T., Duquenne, P., Greff-Mirguet, G., & Oppliger, A. (2008). Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods. Atmospheric Environment, 42, 6767–6774.

    Article  CAS  Google Scholar 

  • Rogers, S., Donnelly, M., Peed, L., Kelty, C., Mondal, S., Zhong, Z., et al. (2011). Decay of bacterial pathogens, fecal indicators, and real-time quantitative PCR genetic markers in manure-amended soils. Applied and Environment Microbiology, 77(14), 4839–4848.

    Article  CAS  Google Scholar 

  • Rose, J. B., & Gerba, C. P. (1991). Use of risk assessment for development of microbial standards. Water Science and Technology, 24(2), 29–34.

    Google Scholar 

  • Sahlström, L. (2002). A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource technology, 87(2), 161–166.

    Article  Google Scholar 

  • Sahu, A., Grimberg, S. J., & Holsen, T. M. (2005). A static water surface sampler to measure bioaerosol deposition and characterize microbial community diversity. Aerosol Sci., 36, 639–650.

    Article  CAS  Google Scholar 

  • Savichtcheva, O., & Okabe, S. (2006). Alternative indicators of fecal pollution: Relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Research, 40, 2463–2476.

    Article  CAS  Google Scholar 

  • Schroeder, C. M., Jensen, E., Miliotis, M. D., Dennis, S. B., & Morgan, K. M. (2007). Microbial Risk Assessment. In S. Shabbir (Ed.), Infectious Disease: Foodborne Diseases (pp. 435–455). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics. Hoboken, NJ: Wiley-Interscience.

    Google Scholar 

  • Soller, J. A., Schoen, M. E., Bartrand, T., Ravenscroft, J., & Ashbolt, N. J. (2010). Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Research, 44, 4674–4691.

    Article  CAS  Google Scholar 

  • Sorber, C. A., Moore, B. E., Johnson, D. E., Harding, H. J., & Thomas, R. E. (1984). Microbiological aerosols from the application of liquid sludge to land. Journal of Water Pollution Control Federation, 56(7), 830–836.

    Google Scholar 

  • Tanner, B. D., Brooks, J. P., Gerba, C. P., Haas, C. N., Josephson, K. L., & Pepper, I. L. (2008). Estimated occupational risk from bioaerosols generated during the land application of class B biosolids. Journal of Environmental Quality, 37, 2311–2321.

    Article  CAS  Google Scholar 

  • Tanner, B. D., Brooks, J. P., Haas, C. N., Gerba, C. P., & Pepper, I. L. (2005). Bioaerosol emission rate and plume characteristics during land application of liquid class B biosolids. Environmental Science and Technology, 39, 1584–1590.

    Article  CAS  Google Scholar 

  • Tarr, P. I., Gordon, C. A., & Chandler, W. L. (2005). Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. The Lancet, 365, 1073–1086.

    CAS  Google Scholar 

  • Teltsch, B., Shuval, H. I., & Tadmor, J. (1980). Die-away kinetics of aerosolized bacteria from sprinkler application of wastewater. Applied and Environment Microbiology, 39(6), 1191–1197.

    CAS  Google Scholar 

  • Teunis, P. F. M., Ogden, I. D., & Strachan, N. J. C. (2008). Hierarchical dose response of E. coli O157:H7 from human outbreaks incorporating heterogeneity in exposure. Epidemiology and Infection, 136(6), 761–770.

    Article  CAS  Google Scholar 

  • Teunis, P. F. M., van der Heijden, O. G., van der Giessen, J. W. B., & Havelaar, A. H. (1996). The dose-response relation in human volunteers for gastro-intestinal pathogens. RIVM Report No. 284 550 002, Bilthoven, The Netherlands.

  • USEPA. (2004). AERMOD: Description of Model Formulation. EPA-454/R-03-004.. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions Monitoring and Analysis Division.

    Google Scholar 

  • USEPA. (2005). Detecting and mitigating the environmental impact of fecal pathogens originating from confined animal feeding operations: Review. In S. Rogers & J. Haines (Eds.), EPA/600/R-06/021. Cincinnati, OH: U.S. Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2009). AERMOD Implementation Guide. Research Triangle Park, NC: U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, AERMOD Implementation Workgroup.

    Google Scholar 

  • USEPA. (2010). Quantitative Microbial Risk Assessment to Estimate Illness in Freshwater Impacted by Agricultural Animal Sources of Fecal Contamination. EPA/882/R-10/005. Washington, DC: U.S. Environmental Protection Agency, Office of Water.

    Google Scholar 

  • USEPA & USDA/FSIS. (2012). Microbial risk assessment guideline: Pathogenic microorganisms with focus on food and water. EPA/100/J-12/001; USDA/FSIS/2012-001. Washington, DC: U.S. Environmental Protection Agency and U.S. Department of Agriculture/Food Safety and Inspection Service.

  • Viau, E., Bibby, K., Paez-Rubio, T., & Peccia, J. (2011). Toward a consensus view on the infectious risks associated with land application of sewage sludge. Environmental Science and Technology, 45, 5459–5469.

    Article  CAS  Google Scholar 

  • Wade, T. J., Calderon, R. L., Sams, E., Beach, M., Brenner, K. P., Williams, A. H., et al. (2005). Rapidly measured indicators of recreational water quality are predictive of swimming-associated gastrointestinal illness. Environmental Health Perspectives, 114(1), 24–28.

    Article  Google Scholar 

  • Wang, L., Rothemund, D., Curd, H., & Reeves, P. R. (2000). Sequence diversity of the Escherichia coli H7 fliC genes: Implication for a DNA-Based typing scheme for E. coli O157:H7. Journal of Clinical Microbiology, 38(5), 1786–1790.

    CAS  Google Scholar 

  • Wathes, C. M., Zaidan, W. A. R., Pearson, G. R., Hintonand, M., & Todd, N. (1988). Aerosol infection of calves and mice with Salmonella typhimurium. The Veterinary Record, 123, 590–594.

    CAS  Google Scholar 

  • Wesely, M. L, Doskey, P. V. & Shannon, J. D. (2002). Deposition parameterizations for the industrial source complex (ISC3) model. ANL/ER/TR-01/003, DOE/xx-nnnn. Argonne, IL: Argonne National Laboratory, Environmental Research Division.

  • Zeng, Q., Westermark, S., Rasmuson-Lestander, A., & Wang, W. (2004). Detection and quantification of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and cultivation. Applied and Environment Microbiology, 70(12), 7295–7302.

    Article  CAS  Google Scholar 

  • Zeng, Q., Westermark, S., Rasmuson-Lestander, A., & Wang, W. (2005). Detection and quantification of Cladosporium in aerosols by real-time PCR. Journal of Environmental Monitoring, 8, 153–160.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by National Research Initiative Competitive Grant No. 2010-65112-20556 and/or the Agricultural Food and Research Initiative (AFRI) from the National Institute of Food and Agriculture (NIFA) Air Quality Program. The authors thank Dr. William J. Mills III and Lakes Environmental Software for their support and donation of AERMOD View, and the farm manager for supporting this study and allowing sample collection at his facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane W. Rogers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahne, M.A., Rogers, S.W., Holsen, T.M. et al. Quantitative microbial risk assessment of bioaerosols from a manure application site. Aerobiologia 31, 73–87 (2015). https://doi.org/10.1007/s10453-014-9348-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-014-9348-0

Keywords

Navigation