Skip to main content

Advertisement

Log in

Bottom-up processes control benthic macroinvertebrate communities and food web structure of fishless artificial wetlands

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

In freshwater environments, the relative contributions of top-down and bottom-up effects on invertebrate communities in relation to productivity are largely ecosystem dependent. Artificial wetlands are increasingly developed to compensate for the loss of natural wetlands; however, their trophic processes remain poorly studied. The present study aimed to evaluate the respective contributions of bottom-up and top-down processes in structuring benthic food webs of three artificial wetlands with varying levels of benthic primary productivity. We found that phototrophic-based food webs in our artificial wetlands were controlled from the bottom-up by primary productivity and algal biomass developing at the water–sediment interface. No significant top-down control of herbivore species by invertebrate predators was detected even in the wetland with the highest productivity. Increased richness of invertebrate grazers and scrapers with benthic primary productivity and algal biomass might have dampened the trophic cascade from predators to primary producers. In contrast with the phototrophic-based food web, analyses performed on the detritus-based food web showed that deposit-feeder invertebrate abundance was not correlated with the quantity of organic matter in sediments, suggesting no bottom-up effect of sedimentary organic matter content on deposit-feeders. More surprisingly, deposit-feeders, especially aquatic oligochaetes, seemed to influence the detritus-based food webs by stimulating organic matter processing and bacterial growth through bioturbation. The present study highlights the occurrence of contrasting trophic processes between phototrophic-based and detritus-based food webs which can have implications on ecosystem functions, such as nutrient cycling and energy fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfaro AC (2009) Diet of the pulmonate gastropod Onchidella nigricans in the intertidal rocky shore, New Zealand. Anim Biol 59:231–240

    Article  Google Scholar 

  • Aunapuu M, Dahlgren J, Oksanen T, Grellmann D, Oksanen L, Olofsson J, Rammul U, Schneider M, Johansen B, Hygen HO (2008) Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH). Am Nat 171:249–262

    Article  PubMed  Google Scholar 

  • Bertness MD, Brisson CP, Bevil MC, Crotty SM (2014) Herbivory drives the spread of salt marsh die-off. PLoS ONE 9(3):e92916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanc L, Chessel D, Dolédec S (1998) Etude de la stabilité temporelle des structures spatiales par analyses d’une série de tableaux de relevés faunistiques totalement appariés. Bull Fr Pêche Pisc 348:1–21

    Google Scholar 

  • Bownik A (2016) Harmful algae: effects of cyanobacterial cyclic peptides on aquatic invertebrates—a short review. Toxicon 124:26–35

    Article  CAS  Google Scholar 

  • Brinkhurst RO, Chua KE (1969) Preliminary investigation of the exploitation of some potential nutritional resources by three sympatric tubificid Oligochaetes. J Fish Res Board Can 26:2659–2668

    Article  Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I-one-table methods. R News 4:5–10

    Google Scholar 

  • Christianen MJA, Middelburg JJ, Holthuijsen SJ, Jouta J, Compton TJ, Heide T, Piersma T, Damsté JSS, van der Veer HW, Schouten S, Olff H (2017) Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale. Ecology 98:1498–1512

    Article  CAS  PubMed  Google Scholar 

  • Cobbaert D, Bayley SE, Greter JL (2010) Effects of a top invertebrate predator (Dytiscus alaskanus; Coleoptera: Dytiscidae) on fishless pond ecosystems. Hydrobiologia 644(1):103–114

    Article  CAS  Google Scholar 

  • Danovaro R, Della Croce N, Eleftheriou A, Fabiano M, Papadopoulou N, Smith C, Tselepides A (1995) Meiofauna of the deep Eastern Mediterranean Sea: distribution and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Prog Oceanogr 36:329–341

    Article  Google Scholar 

  • Davidson NC (2014) How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res 65:934–941

    Article  Google Scholar 

  • De Meester L, Declerck S, Stoks R, Louette G, Van De Meutter F, De Bie T, Michels E, Brendonck L (2005) Ponds and pools as model systems in conservation biology, ecology and evolutionary biology. Aquat Conserv Mar Freshw Ecosyst 15:715–725

    Article  Google Scholar 

  • DeMott WR, Zhang QX, Carmichael WW (1991) Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol Oceanogr 36:1346–1357

    Article  CAS  Google Scholar 

  • Diehl S (1992) Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73:1646–1661

    Article  Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species–environment relationships. Freshw Biol 31:277–294

    Article  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089

    Article  Google Scholar 

  • Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7:47–52

    Google Scholar 

  • Du X, García-Berthou E, Wang Q, Liu J, Zhang T, Li Z (2015) Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat Ecol 49:199–210

    Article  CAS  Google Scholar 

  • Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  PubMed  Google Scholar 

  • Estragnat V, Mermillod-Blondin F, Jully M, Lemoine D, Lassabatere L, Volatier L (2018) Does the efficiency of grazer introduction to restore and preserve the hydraulic performance of infiltration basins depend on the physical and biological characteristics of the infiltration media? Ecol Eng 116:127–132

    Article  Google Scholar 

  • Evans KL, Warren PH, Gaston KJ (2005) Species–energy relationships at the macroecological scale: a review of the mechanisms. Biol Rev 80:1–25

    Article  PubMed  Google Scholar 

  • Foulquier A, Malard F, Mermillod-Blondin F, Montuelle B, Dolédec S, Volat B, Gibert J (2011) Surface water linkages regulate trophic interactions in a groundwater food web. Ecosystems 14:1339–1353

    Article  CAS  Google Scholar 

  • Fukuhara H, Kikuchi E, Kurihara Y (1980) The effects of Branchiura sowerbyi (Tubificidae) on bacterial populations in submerged ricefield soil. Oikos 34:88–93

    Article  Google Scholar 

  • Gette-Bouvarot M, Mermillod-Blondin F, Angulo-Jaramillo R, Delolme C, Lemoine D, Lassabatere L, Loizeau S, Volatier L (2014) Coupling hydraulic and biological measurements highlights the key influence of algal biofilm on infiltration basin performance. Ecohydrology 7:950–964

    Article  Google Scholar 

  • Gette-Bouvarot M, Volatier L, Lassabatere L, Lemoine D, Simon L, Delolme C, Mermillod-Blondin F (2015) Ecological engineering approaches to improve hydraulic properties of infiltration basins designed for groundwater recharge. Environ Sci Technol 49:9936–9944

    Article  CAS  PubMed  Google Scholar 

  • Griebler C (1996) Some applications for the DMSO-reduction method as a new tool to determine the microbial activity in water-saturated sediments. Arch Hydrobiol Suppl 113:405–410

    CAS  Google Scholar 

  • Gruner DS, Smith JE, Seabloom EW, Sandin SA, Ngai JT, Hillebrand H, Harpole WS, Elser JJ, Cleland EE, Bracken MES, Borer ET, Bolker BM (2008) A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 11:740–755

    Article  PubMed  Google Scholar 

  • Gulati R, DeMott W (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw Biol 38:753–768

    Article  Google Scholar 

  • Hansson LA, Brönmark C, Anders Nilsson P, Åbjörnsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw Biol 50:705–714

    Article  CAS  Google Scholar 

  • Harris T, Graham J (2015) Preliminary evaluation of an in vivo fluorometer to quantify algal periphyton biomass and community composition. Lake Reserv Manag 31:127–133

    Article  CAS  Google Scholar 

  • Hillebrand H (2009) Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. J Phycol 45:798–806

    Article  PubMed  Google Scholar 

  • Hoset KS, Ruffino L, Tuomi M, Oksanen T, Oksanen L, Mäkynen A, Johansen B, Moe T (2017) Changes in the spatial configuration and strength of trophic control across a productivity gradient during a massive rodent outbreak. Ecosystems 20:1421–1435

    Article  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species. Cambridge University Press, Cambridge

    Google Scholar 

  • Hylleberg J (1975) Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia 14:113–137

    Article  Google Scholar 

  • Karlson AM, Gorokhova E, Elmgren R (2014) Nitrogen fixed by cyanobacteria is utilized by deposit-feeders. PLoS ONE 9:e104460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laske SM, Rosenberger AE, Kane WJ, Wipfli MS, Zimmerman CE (2017) Top-down control of invertebrates by Ninespine Stickleback in Arctic ponds. Freshw Sci 36:124–137

    Article  Google Scholar 

  • Leibold MA (1989) Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am Nat 134:922–949

    Article  Google Scholar 

  • Leibold MA, Chase JM, Shurin JB, Downing AL (1997) Species turnover and the regulation of trophic structure. Annu Rev Ecol Syst 28:467–494

    Article  Google Scholar 

  • Lezama F, Baeza S, Altesor A, Cesa A, Chaneton EJ, Paruelo JM (2014) Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J Veg Sci 25:8–21

    Article  Google Scholar 

  • Lin KJ, Yo SP (2008) The effect of organic pollution on the abundance and distribution of aquatic oligochaetes in an urban water basin, Taiwan. Hydrobiologia 596:213–223

    Article  CAS  Google Scholar 

  • Lopez GR, Levinton JS (1987) Ecology of deposit-feeding animals in marine sediments. Q Rev Biol 62:235–260

    Article  Google Scholar 

  • Magnusson AK, Williams DD (2009) Top-down control by insect predators in an intermittent pond—a field experiment. Ann Limnol-Intern J Limnol 45:131–143

    Article  Google Scholar 

  • Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257–289

    Article  CAS  PubMed  Google Scholar 

  • Menge BA, Olson AM, Dahlhoff EP (2002) Environmental stress, bottom-up effects, and community dynamics: integrating molecular-physiological and ecological approaches. Integr Comp Biol 42:892–908

    Article  PubMed  Google Scholar 

  • Mermillod-Blondin F, Simon L, Maazouzi C, Foulquier A, Delolme C, Marmonier P (2015) Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: assessment of retention efficiency. Water Res 81:27–37

    Article  CAS  PubMed  Google Scholar 

  • Mermillod-Blondin F, Bouvarot M, Déjollat Y, Adrien J, Maire E, Lemoine D, Marmonier P, Volatier L (2018) Influence of tubificid worms on sediment structure, benthic biofilm and fauna in wetlands: a field enclosure experiment. Freshw Biol 63:1420–1432

    Article  CAS  Google Scholar 

  • Moore A (2018) Context-dependent consumer control in New England tidal wetlands. PLoS ONE 13(5):e0197170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet J-P, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment-water interface: bioturbation and consumer-substrate interaction. Oecologia 161:125–138

    Article  PubMed  Google Scholar 

  • Odum EP, Smalley AE (1959) Comparison of population energy flow of an herbivorous and a deposit-feeding invertebrate in a saltmarsh ecosystem. Proc Natl Acad Sci USA 45:617–622

    Article  CAS  PubMed  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Article  Google Scholar 

  • Paerl HW, Fulton RS (2006) Ecology of harmful cyanobacteria. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 95–109

    Chapter  Google Scholar 

  • Pigneret M, Mermillod-Blondin F, Volatier L, Romestaing C, Maire E, Adrien J, Guillard L, Roussel D, Hervant F (2016) Urban pollution of sediments: impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes. Sci Total Environ 568:196–207

    Article  CAS  PubMed  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

  • Ramalho SP, Adão H, Kiriakoulakis K, Wolff GA, Vanreusel A, Ingels J (2014) Temporal and spatial variation in the Nazaré Canyon (Western Iberian margin): inter-annual and canyon heterogeneity effects on meiofauna biomass and diversity. Deep Sea Res Part I Oceanogr Res Pap 83:102–114

    Article  Google Scholar 

  • Robert P, Escoufier Y (1976) A unifying tool for linear multivariate statistical methods: the RV-coefficient. Appl Stat 25:257–265

    Article  Google Scholar 

  • Sala NM, Bertness MD, Silliman B (2008) The dynamics of bottom-up and top-down control in a New England salt marsh. Oikos 117:1050–1056

    Article  Google Scholar 

  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791

    Article  Google Scholar 

  • Soares MCS, Lürling M, Huszar VL (2010) Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. J Plankton Res 32:999–1008

    Article  CAS  Google Scholar 

  • Srivastava DS, Bell T (2009) Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol Lett 12:1016–1028

    Article  PubMed  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529

    Article  CAS  PubMed  Google Scholar 

  • Steiner CF (2001) The effects of prey heterogeneity and consumer identity on the limitation of trophic-level biomass. Ecology 82:2495–2506

    Article  Google Scholar 

  • Sundbäck K, Miles A, Hulth S, Pihl L, Engström P, Selander E, Svenson A (2003) Importance of benthic nutrient regeneration during initiation of macroalgal blooms in shallow bays. Mar Ecol Prog Ser 246:115–126

    Article  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2000) Invertébrés d’eau douce: systématique, biologie, écologie. CNRS éditions, Paris

    Google Scholar 

  • Tall L, Cattaneo A, Cloutier L, Dray S, Legendre P (2006) Resource partitioning in a grazer guild feeding on a multilayer diatom mat. J N Am Benthol Soc 25:800–810

    Article  Google Scholar 

  • Traunspurger W, Bergtold M, Goedkoop W (1997) The effects of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112:118–122

    Article  PubMed  Google Scholar 

  • Van de Bund WJ, Goedkoop W, Johnson RK (1994) Effects of deposit-feeder activity on bacterial production and abundance in profundal Lake sediment. J N Am Benthol Soc 13:532–539

    Article  Google Scholar 

  • Van de Koppel J, Herman PM, Thoolen P, Heip CH (2001) Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–3461

    Article  Google Scholar 

  • Watermann F, Hillebrand H, Gerdes G, Krumbein WE, Sommer U (1999) Competition between benthic cyanobacteria and diatoms as influenced by different grain sizes and temperatures. Mar Ecol Prog Ser 187:77–87

    Article  Google Scholar 

  • Wavre M, Brinkhurst RO (1971) Interactions between some tubificid oligochaetes and bacteria found in the sediments of Toronto Harbour, Ontario. J Fish Res Board Can 28:335–341

    Article  Google Scholar 

  • Wieltschnig C, Fischer UR, Velimirov B, Kirschner AK (2008) Effects of deposit-feeding macrofauna on benthic bacteria, viruses, and protozoa in a silty freshwater sediment. Microb Ecol 56:1–12

    Article  PubMed  Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506

    Article  Google Scholar 

  • Yingst JY (1976) The utilization of organic matter in shallow marine sediments by epibenthic deposit-feeding holoturian. J Exp Mar Biol Ecol 23:55–69

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Félix Vallier for his help during laboratory analyses. This research was done on the Research Platform of Crépieux-Charmy (Plate-forme de recherche de Crépieux-Charmy) and received financial and technical support from the Urban Community of Lyon (Grand Lyon La Métropole) and Veolia Water (Eau du Grand Lyon). This work was performed within the framework of the EUR H2O’Lyon (ANR-17-EURE-0018) of Université de Lyon (UdL), within the programme “Investissements d’Avenir” operated by the French National Research Agency (ANR). We also would like to thank the two anonymous referees for their pertinent comments that significantly improved an earlier version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Mermillod-Blondin.

Additional information

Handling Editor: Télesphore Sime-Ngando.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mermillod-Blondin, F., Marmonier, P., Tenaille, M. et al. Bottom-up processes control benthic macroinvertebrate communities and food web structure of fishless artificial wetlands. Aquat Ecol 54, 575–589 (2020). https://doi.org/10.1007/s10452-020-09760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-020-09760-2

Keywords

Navigation