Skip to main content
Log in

A quantitative hydrogeomorphic approach to the classification of temporary wetlands in the Doñana National Park (SW Spain)

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

A quantitative hydrogeomorphic approach was applied to an extensive survey of temporary wetlands in the Doñana National Park (SW Spain) in search for quantitative thresholds for wetland classification. Twenty freshwater ponds on the aeolian sand mantle and 46 sites on silty-clay substrate, located in the southern marshland, were surveyed during the heaviest rainy period so far recorded (October 1995–September 1997). On average, temporary ponds showed higher water depth, longer flooding period, lower conductivity (<0.5 mS cm−1), lower pH (6.7), lower phosphate concentration (0.4 μM) and a more balanced proportion of Ca2+/Na+ than temporary marshes. During floods, marshland sites exhibited higher water transparency, pH (9.5), alkalinity (3.5 meq l−1), conductivity (8.2 mS cm−1), phosphate concentration (0.7 μM), Na+ and Ca2+ concentrations (97.2 and 3.5 meq l−1, respectively) than ponds. Study sites were significantly segregated (ANOSIM test: R = 0.88, < 0.01, n = 92) in relation to water depth and conductivity. A conductivity of 1.6 mS cm−1 is proposed as a threshold between marshland sites and ponds during floods. Marshland sites were further segregated into two groups (ANOSIM test: R = 0.777, P < 0.01, n = 23) according to the Na+/Ca2+ ratio (in meq l−1) at a threshold value of 25. An ordination by PCA showed that five variables grouped 81.4% of the total variance in two axes. The first PCA axis (60.7% of variance) separated temporary wetlands into ponds and marshland sites according to variables related to substrate and hydrology (Na+/Ca2+ ratio, conductivity, water depth and flooding period). Other variables (e.g., water transparency, alkalinity, pH, submersed macrophyte biomass, phosphate, nitrate and planktonic chlorophyll concentrations) did not produce a significant segregation between marshland and pond sites during floods. Further discrimination within each wetland type was thus not achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso M, Comelles M (1981) Criterios básicos para la clasificación limnológica de las aguas continentales de pequeño voulmen de España. In: Prat N (ed) Actas I Congreso Español Limnologia, Barcelona, pp 35–42

  • American Public Health Association (1985) Standard methods for the examination of water and wastewaters, Washington

  • Boon PI, Frankenberg J, Hillman T, Oliver R, Shiel R (1990) Billabongs. In: Mackay N, Eastburn D (eds) The Murray. Murray-Darling Basin Commission, Canberra, pp 183–198

    Google Scholar 

  • Bravo MA, Montes C (1993) Inventario de las formaciones palustres del manto eólico del Parque Nacional de Doñana (SW España). In: Cruz L, Morales R, Sánchez P, Carrillo P (eds) Actas VI Congreso Español de Limnología, Granada, pp 31–44

  • Brock MA (1986) Adaptation to fluctuations rather than to extremes of environmental parameters. In: De Deckker P, Williams WD (eds) Limnology in Australia. CSIRO, Melbourne, pp 131–140

    Google Scholar 

  • Clemente L, García LV, Siljeström P (1998) Suelos del Parque Nacional de Doñana. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Cole AC, Brooks RP, Wardrop DH (1997) Wetland hydrology as a function of hydrogeomorphic (HGM) subclass. Wetlands 17:456–467

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U. S. Department of the Interior, Fish and Wildlife Service, Washington

    Google Scholar 

  • Espinar JL (2000) Distribución espacial y temporal de las comunidades de macrófitos acuáticos de la “Marisma salada” del Parque Nacional de Doñana. Master Thesis, University of Sevilla

  • Espinar JL (2004) Ecología de las comunidades de grandes helófitos de la marisma de Doñana. Dissertation, University of Sevilla

  • Espinar JL (2006) Sample size and the detection of a humped-shaped relationship between biomass and species richness in Mediterranean wetlands. J Veg Sci 17:227–232

    Google Scholar 

  • Espinar JL, García LV, García-Murillo P, Toja J (2002) Submerged macrophyte zonation in a Mediterranean salt marsh: a facilitation effect from established helophytes? J Veg Sci 13:831–840

    Article  Google Scholar 

  • García-Novo F, Galindo MD, García-Sánchez JA, Guisande C, Jaúregui J, López T, Mazuelos N, Muñoz JC, Serrano L, Toja J (1991) Tipicación de los ecosistemas acuáticos sobre sustrato arenoso del Parque Nacional de Doñana. In: Actas III Simposio sobre el Agua en Andalucía, Instituto Tecnológico GeoMinero de España, Córdoba, 24–27 September 1991, pp 165–176

  • Gilman K (1994) Hydrology and wetland conservation. Wiley, New York

    Google Scholar 

  • Grillas P (1990) Distribution of submerged macrophytes in the Camargue in relation to enviromental factors. J Veg Sci 1:339–402

    Article  Google Scholar 

  • Grillas P, van Wijck C, Bonis A (1993) The effect of salinity on the dominance-diversity relations of experimental macrophyte communities. J Veg Sci 4:453–460

    Article  Google Scholar 

  • Hillman TJ (1986) Billabongs. In: De Deckker P, Williams WD (eds) Limnology in Australia. CSIRO, Melbourne, pp 457–470

    Google Scholar 

  • Junta de Andalucía (2002) Plan andaluz de humedales. Consejería de Medio Ambiente, Sevilla

  • Manazano M (2001) Clasificación de los humedales de Doñana atendiendo a su funcionamiento hidrológico. Hidrología y Recursos Hidraúlicos XXIV:57–75

    Google Scholar 

  • Marín C, García-Novo F (2006) Doñana. Water and biosphere. Spanish Ministry of Environment, Madrid

    Google Scholar 

  • Ménanteau L (1982) Les Marismes du Guadalquivir, exemple de transformation d`un paysage alluvial au curs du Quaternaire recent. Dissertation, Université Paris-Sorbonne

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Analyt Chem Acta 27:31–36

    Article  CAS  Google Scholar 

  • Lambert-Servien E, Clemenceau G, Gabory O, Douillard E, Haury J (2006) Stoneworts (Characeae) and associated macrophytes species as indicators of water quality and human activities in the Pays-de-la-Loire region, France. Hydrobiologia 570:107–115

    Article  CAS  Google Scholar 

  • Llamas R (1990) Geohydrology of the eolian sands of the Doñana National Park (Spain). Catena Supp 18:145–154

    Google Scholar 

  • Lozano E (2004) Las aguas subterráneas en Los Cotos de Doñana y su influencia en las lagunas. Dissertation, Universidad Politécnica de Barcelona, Barcelona

  • Radke LC, Howard KWF, Gell PA (2002) Chemical diversity in south-eastern Australian saline lakes I: geochemical causes. Mar Freshw Res 53:941–959

    Article  CAS  Google Scholar 

  • Rodier J (1981) Análisis de las aguas: aguas naturales, aguas residuales, aguas de mar. Omega, Barcelona

    Google Scholar 

  • Rodríguez A (2006) The geomorphological evolution of Doñana. In: Marín C, García-Novo F (eds) Doñana. Water and biosphere. Spanish Ministry of Environment, Madrid, pp. 137–140

    Google Scholar 

  • Sacks LA, Herman JS, Konikow LF, Vela AL (1992) Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain. J Hydrol 136:123–154

    Article  CAS  Google Scholar 

  • Semeniuk V, Semeniuk CA (1997) A geomorphic approach to global classification of natural inland wetlands and rationalization of the system used by the Ramsar Convention- a discussion. Wetlands Ecol Manage 5:145–158

    Article  Google Scholar 

  • Serrano L (1994) Sources, abundance and disappearance of polyphenolic compounds in temporary ponds of Doñana National Park (south-western Spain). Aus J Mar Freshw Res 45:1555–1564

    Article  CAS  Google Scholar 

  • Serrano L, Toja J (1995) Limnological description of four temporary ponds in the Doñana National Park (SW, Spain). Arch Hydrobiol 133:497–516

    Google Scholar 

  • Serrano L, Pérez-Romero P, Plazuelo A, Torres A, Toja J (2000) Microbial degradation of dissolved polyphenolic compounds in seasonal-ponds. Verh Int Verein Limnol 27:3252–3259

    Google Scholar 

  • Serrano L, Reina M, Martín G, Reyes I, Arechederra A, León D, Toja J (2006) The aquatic systems of Doñana: watersheds and frontiers. Limnetica 25:11–32

    Google Scholar 

  • Talling JF, Driver D (1963) Some problems in the estimation of chlorophyll-a in phytoplankton. Proceedings of a conference on primary productivity measurements, marine and freshwaters. US Atomic Energy Commission TID-7633, Honolulu, pp 142–146

  • Vanney JR, Menanteau L (1985) Physiographic map of the Atlantic littoral of Andalousia 1/50000. Junta de Andalucia, Sevilla

    Google Scholar 

Download references

Acknowledgments

We are grateful to L. Clemente for his support while preparing the manuscript and to C. Urdiales for supplying flooding records in the marshland. We also thank Khalid Fahd and Jose Luis Moreiras for their help in laboratory and field work. Financial support came from the Spanish Ministry of the Environment (MMA, project 05/99), CICYT (AMB95-1054) and the Junta de Andalucía (research groups #4086 and 4033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Serrano.

Appendices

Appendix 1

Marshland site

Date

aDepth

bEC

cAlka.

dCa2+

eNa+

pH

fi-P

gNO3

hNH4+

iS.disc

jChl

kBiomass

1

20/04/96

0.55

35.9

    

1.9

 

357.1

100

 

339.6

2

20/04/96

0.12

7.5

    

0.9

 

30.6

100

 

100.6

3

20/04/96

0.09

11.9

      

114.9

100

 

133.7

4

20/04/96

0.12

11.9

    

0.9

 

25.2

42

 

58.9

5

20/04/96

0.18

2.6

      

39.9

100

 

183.3

6

3/05/96

0.43

31.2

    

0.4

 

146.2

100

 

304.7

7

3/05/96

0.29

11.2

    

0.2

 

58.9

100

 

146.5

8

1/04/96

0.23

18.4

    

0.6

 

42.6

100

 

350.5

9

1/04/96

0.20

2.1

    

0.4

 

35.4

100

 

161.0

10

27/04/96

0.39

2.2

    

0.4

 

27.6

49

 

58.1

11

27/04/96

0.35

2.4

    

3.2

 

11.4

29

 

118.1

12

1/04/96

0.35

2.4

    

1.2

 

23.4

34

 

39.1

13

27/04/96

0.39

30.0

    

2.6

 

43.9

57

 

83.5

14

30/04/96

0.25

3.5

    

3.8

 

40.8

24

 

51.1

15

30/04/96

0.13

3.2

    

1.9

 

58.9

30

 

94.8

16

6/03/96

0.20

23.4

       

100

  

17

6/03/96

0.28

24.1

       

100

 

3.7

18

6/03/96

0.20

17.0

       

100

 

213.6

19

30/04/97

0.50

5.8

1.6

4.1

136.2

10.5

0.7

21.0

10.9

100

106.5

10.5

20

30/04/97

0.16

5.1

1.7

2.1

97.1

11.0

0.5

19.0

16.2

100

147.1

58.9

21

30/04/97

0.06

5.2

2.1

2.3

107.0

10.5

0.6

23.3

39.1

100

3.8

27.1

22

30/04/97

0.04

27.4

2.6

15.8

546.4

11.0

0.7

10.0

 

100

1.4

51.4

23

30/04/97

0.08

3.7

2.2

1.6

84.0

11.0

0.4

12.0

28.5

100

2.4

 

24

30/04/97

0.06

4.5

3.3

3.2

87.3

12.0

0.1

12.9

36.0

100

3.5

56.2

25

30/04/97

0.10

7.0

1.6

4.4

131.5

10.5

0.2

7.3

47.0

100

2.4

87.5

26

30/04/97

0.15

4.4

2.5

1.8

96.7

10.5

0.1

 

27.2

100

2.8

66.3

27

30/04/97

0.10

4.9

2.2

2.5

106.1

11.0

0.1

8.5

62.4

100

5.4

82.1

28

30/04/97

0.18

4.0

4.0

2.6

76.5

8.2

0.1

10.7

34.2

100

2.0

43.6

29

16/05/97

0.27

4.2

4.2

3.5

93.6

9.0

0.6

13.0

 

100

14.0

119.2

30

16/05/97

0.28

4.7

2.0

2.0

101.2

11.0

0.2

13.5

 

100

 

174.1

31

16/05/97

0.24

5.5

1.9

2.3

118.6

11.0

0.2

15.6

 

100

2.1

231.6

32

16/05/97

0.12

2.4

4.0

2.9

40.9

 

0.3

18.4

 

50

8.8

40.6

33

16/05/97

0.25

2.5

2.4

1.7

46.4

8.0

0.2

18.8

 

100

10.4

50.1

34

16/05/97

0.06

2.5

4.6

3.4

37.3

9.5

0.1

16.2

 

100

8.1

53.4

35

16/05/97

0.25

5.0

2.7

3.3

98.2

9.0

0.0

11.0

 

100

2.5

38.1

36

30/04/97

0.24

2.8

5.4

4.2

46.0

7.5

1.5

31.2

 

100

66.7

42.6

37

15/05/97

0.28

2.3

4.9

3.3

34.5

7.5

0.4

21.2

 

100

14.6

9.9

38

15/05/97

0.15

2.3

4.3

3.0

34.5

8.5

0.3

22.3

 

100

16.4

80.4

39

15/05/97

0.38

2.2

4.4

2.8

32.7

8.5

0.7

20.2

 

47

9.3

284.0

40

15/05/97

0.29

3.0

5.2

4.0

59.1

8.0

1.0

26.6

 

100

15.1

86.3

41

16/05/97

0.24

4.5

2.4

2.0

114.8

10.0

0.0

8.1

 

100

2.2

171.0

42

16/05/97

0.29

4.8

4.2

2.8

106.5

9.0

0.5

20.6

 

70

1.1

145.4

43

15/05/97

0.16

3.6

3.6

3.2

74.4

 

0.0

22.1

60.6

100

28.8

131.9

44

15/05/97

0.25

3.1

5.8

3.6

50.0

8.5

1.6

26.9

72.4

60

73.5

153.6

45

15/05/97

0.22

4.1

6.1

3.9

84.5

8.5

1.2

23.7

54.0

52

52.6

72.4

46

15/05/97

0.31

4.1

5.7

4.3

80.5

8.5

0.1

23.4

71.2

30

48.3

45.9

  1. aDepth: water depth at sampling date (m); b EC: electrical conductivity at 25°C (mS·cm−1); c Alka: total alkalinity (meq l−1); d Ca2+: calcium concentration (meq l−1);e Na+: sodium concentration (meq l−1); f i-P: inorganic phosphate concentration (μM); g NO3: nitrate concentration (μM); h NH4+: ammonium concentration (μM); i S. disk: percentage of Secchi-disc depth in the water column (%); j Chl: planktonic chlorophyll a concentration (μg l−1); k Biomass: submerged macrophyte biomass (g m−2)

Appendix 2

Pond site

Date

aDepth

bEC

cAlka

dCa2+

eNa+

pH

fi-P

gNO3

hNH4+

iS.disc

jChl

kBiomass

RAS

20/03/96

0.30

0.3

0.6

   

0.1

6.7

128.0

25

2.3

 

JAB

20/03/96

0.36

 

0.5

   

0.4

107.0

94.0

 

2.7

 

INF

20/03/96

0.30

0.5

1.1

   

0.1

21.5

93.0

62

1.1

 

AMA

20/03/96

0.61

0.2

0.5

  

5.7

0.2

23.8

155.0

26

1.7

 

NAV

20/03/96

1.02

0.3

0.7

   

0.3

58.1

37.0

20

4.3

 

APA

20/03/96

0.48

0.5

0.1

   

0.2

30.7

94.0

44

8.4

 

MOR

20/03/96

0.70

0.3

0.6

   

0.6

47.3

185.0

23

2.2

 

MAR

20/03/96

0.90

0.3

0.3

  

5.7

0.2

43.6

65.0

47

73.2

 

PER

20/03/96

0.11

0.8

2.2

   

0.1

20.1

46.0

100

8.8

 

CTO

28/03/96

0.60

0.3

0.5

  

5.9

0.4

107.0

94.0

100

2.7

 

ZAH

28/03/96

1.10

0.5

1.0

  

6.3

0.1

1.9

106.0

27

0.5

 

TAR

28/03/96

1.40

0.4

1.1

  

6.2

0.2

21.7

98.0

14

0.4

 

LVE

28/03/96

1.16

0.4

1.3

  

5.5

0.1

22.9

84.0

15

3.3

 

DUL

20/03/96

1.70

0.7

1.3

  

6.5

0.1

31.1

153.0

29

1.9

 

SOL

20/03/96

2.98

1.1

2.1

   

0.3

17.5

170.0

25

3.3

 

INF

15/04/96

0.44

0.6

0.9

   

0.0

13.0

56.0

77

6.0

46.8

DUL

15/04/96

0.70

0.6

1.6

   

1.0

35.8

47.0

71

2.4

41.0

AMA

15/04/96

0.46

0.3

1.0

   

0.2

41.8

82.0

41

3.1

24.8

APA

15/04/96

0.42

0.5

0.3

   

0.1

56.7

102.0

48

52.2

40.0

INF

20/05/96

0.50

0.4

0.8

   

0.0

14.8

23.0

82

59.0

29.4

DUL

20/05/96

0.83

0.4

1.3

   

0.1

72.9

21.0

49

14.7

73.2

AMA

20/05/96

0.77

0.2

0.6

   

0.1

 

21.0

44

13.5

17.8

APA

20/05/96

0.56

0.3

0.3

   

0.3

35.8

23.0

49

2.5

77.0

INF

17/06/96

0.27

0.7

1.3

   

0.1

25.9

 

74

185.0

15.3

DUL

17/06/96

0.68

0.6

2.2

   

0.1

10.2

24.0

62

27.8

61.2

AMA

17/06/96

0.48

0.3

0.9

   

0.1

17.6

15.0

38

68.5

33.1

APA

17/06/96

0.48

0.3

0.2

   

0.1

34.5

11.0

45

9.0

32.5

DUL

23/07/96

0.34

0.9

3.4

   

0.1

 

25.0

65

49.5

 

AMA

23/07/96

0.10

0.6

2.1

   

0.2

 

42.0

57

447.1

 

APA

23/07/96

0.22

0.2

0.5

   

0.0

4.3

18.0

51

  

AMA

27/05/97

0.70

0.3

0.4

0.8

2.1

6.6

0.5

51.4

0.0

42

7.8

 

APA

27/05/97

0.38

0.2

0.2

0.4

1.5

6.2

0.4

20.5

0.0

38

15.4

 

BRE

14/02/97

0.84

0.3

0.3

0.5

2.7

5.3

0.6

3.1

5.4

35

55.4

 

CAM

14/02/97

0.25

0.3

0.8

0.03

0.08

7.3

 

0.0

82.2

100

18.4

 

CAÑ

15/02/97

0.25

0.3

0.8

  

6.3

 

0.3

87.3

75

1.5

 

CTO

27/05/97

0.89

0.7

2.5

1.5

5.3

7.3

0.3

3.7

58.8

52

0.6

 

DUL

27/05/97

1.34

0.6

1.7

1.2

4.0

7.6

1.8

10.1

31.9

31

69.7

 

JAB

27/05/97

0.10

0.3

1.0

0.7

2.6

6.7

0.9

10.7

33.6

10

22.4

 

MAR

27/05/97

0.67

0.3

0.4

0.6

2.2

6.3

0.7

1.7

50.4

29

3.5

 

MOR

27/05/97

0.60

0.3

0.3

0.6

1.9

6.8

0.6

14.1

43.6

23

18.3

 

NAV

27/05/97

1.03

0.4

2.3

0.7

2.5

7.1

1.2

0.0

42

20

13.1

 

PER

14/02/97

0.25

0.6

2.3

0.08

0.2

8.0

 

0.0

63.6

100

1.6

 

RN1

15/02/97

0.20

0.1

0.5

0.01

0.02

6.4

 

9.1

73.3

100

0.6

 

RN2

27/05/97

0.40

0.4

0.5

0.4

2.1

6.8

0.7

15.4

82.3

100

13.1

 

SOL

27/05/97

2.28

0.7

3.2

2.4

4.4

8.3

0.7

0.0

36.9

25

28.5

 

TAR

27/05/97

0.87

0.8

1.0

1.7

5.7

7.4

1.3

0.0

50.4

16

15.4

 

ZAH

27/05/97

0.70

0.7

1.6

1.2

7.1

7.3

2.1

15.4

48.7

19

4.3

 

LVE

27/05/97

0.91

0.6

 

0.5

5.2

7.3

0.2

 

57.1

15

42.6

 

RAS

27/05/97

 

0.4

0.4

  

6.5

0.5

 

36.9

25

11.2

 
  1. a Depth: water depth at sampling date (m); b EC: electrical conductivity at 25°C (mS cm−1); c Alka: total alkalinity (meq l−1); d Ca2+: calcium concentration (meq l−1); e Na+: sodium concentration (meq l−1); f i-P: inorganic phosphate concentration (μM); g NO3: nitrate concentration (μM); h NH4+: ammonium concentration (μM); i S. disc: percentage of Secchi-disc depth in the water column (%); j Chl: planktonic chlorophyll a concentration (μg l−1); k Biomass: submerged macrophyte biomass (g m−2)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinar, J.L., Serrano, L. A quantitative hydrogeomorphic approach to the classification of temporary wetlands in the Doñana National Park (SW Spain). Aquat Ecol 43, 323–334 (2009). https://doi.org/10.1007/s10452-007-9162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-007-9162-7

Keywords

Navigation