Skip to main content
Log in

Synthesis and Optimization of biosorbent using jabuticaba peel (Myrciaria cauliflora) for anthocyanin recovery through adsorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This study presents the use of jabuticaba peel to create a biosorbent material for recovering cyanidin-3-glucoside (C3G), a valuable compound in anthocyanin-rich extracts. This approach tackles waste management, promotes a circular economy, and offers a sustainable alternative to traditional methods. The biosorbents were synthesized through a chemical activation using three different solvents: H3PO4, HNO3, and KOH. Sample characterization was conducted through various techniques, providing a thorough and multi-faceted understanding of the material properties. The morphological results showed the development of rich porous structures and increased carbon concentrations after activation, enhancing the adsorption capacity of the synthesized materials derived from jaboticaba peel. The H3PO4-activated biosorbent outperformed commercial adsorbents. Granulometric and concentration studies identified optimal conditions, and colorimetric analysis confirmed effective C3G removal. Kinetic studies indicated an adsorption process reaching equilibrium within 9.0 h. The Avrami model suggested a complex adsorption mechanism and intraparticle diffusion, which revealed a two-step process involving external mass transfer and internal diffusion. Adsorption isotherms at different temperatures fit the Langmuir model, indicating favorable adsorption behavior. The thermodynamic analysis confirmed the viability of jabuticaba peel biosorbents for eco-friendly C3G removal due to spontaneous, endothermic adsorption processes. The reuse study demonstrated that the biosorbent maintained its adsorption capacity up to the fifth cycle. Additionally, the adsorption mechanism of C3G on H3PO4-activated biosorbent was identified, emphasizing cation-π interaction, pore filling, electrostatic attraction, van der Waals forces, hydrogen bonds, and π-π interactions at pH 2. This revealed a physisorption process with diverse intermolecular forces. This study further supports ecological waste management and the creation of economical biosorbents for anthocyanin recovery, valuable compounds applicable in pharmaceuticals, food, and nutraceutical industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Inada, K.O.P., Leite, I.B., Martins, A.B.N., et al.: Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food. Res. Int. 147, 110518 (2021). https://doi.org/10.1016/j.foodres.2021.110518

    Article  PubMed  Google Scholar 

  2. Ribeiro, N.C.B.V., Baseggio, A.M., Schlegel, V.: Jaboticaba: Chemistry and bioactivity. In: Mérillon, J.M., Ramawat, K.G. (eds.) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-78030-6_24

  3. Morales, P., Barros, L., Dias, M.I., et al.: Non-fermented and fermented jabuticaba (Myrciaria cauliflora Mart.) pomaces as valuable sources of functional ingredients. Food Chem. 208, 220–227 (2016). https://doi.org/10.1016/j.foodchem.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes, F.A.N., Fonteles, T.V., Rodrigues, S., et al.: Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: kinetics and mathematical modeling. J. Food. Sci. Technol. 57, 2321–2328 (2020). https://doi.org/10.1007/s13197-020-04270-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barroso, T.L.C.T., da Rosa, R.G., Sganzerla, W.G., et al.: Hydrothermal pretreatment based on semi-continuous flow-through sequential reactors for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) peel. J. Supercrit. Fluids. 191, 105766 (2022). https://doi.org/10.1016/j.supflu.2022.105766

    Article  CAS  Google Scholar 

  6. Dalponte Dallabona, I., de Lima, G.G., Cestaro, B.I., et al.: Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. Int. J. Biol. Macromol. 163, 1421–1432 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.256

    Article  CAS  PubMed  Google Scholar 

  7. Fleck, N., Sant’ Anna, V., de Oliveira, W.C., et al.: Jaboticaba peel extract as an antimicrobial agent: screening and stability analysis. Br. Food. J. 124, 2793–2804 (2022). https://doi.org/10.1108/BFJ-03-2021-0253

    Article  Google Scholar 

  8. Fontes, R.E.B., Santos, B.L.P., Ruzene, D.S., Silva, D.P.: Perspectives for application of jabuticaba and its residues. Sci. Plena. 18, 029901 (2022). https://doi.org/10.14808/sci.plena.2022.029901

  9. Benvenutti, L., Zielinski, A.A.F., Ferreira, S.R.S.: Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends. Food. Sci. Technol. 112, 118–136 (2021). https://doi.org/10.1016/j.tifs.2021.03.044

    Article  CAS  Google Scholar 

  10. da Rosa, R.G., Sganzerla, W.G., Barroso, T.L.C.T., et al.: Sustainable bioprocess combining subcritical water pretreatment followed by anaerobic digestion for the valorization of jabuticaba (Myrciaria cauliflora) agro-industrial by-product in bioenergy and biofertilizer. Fuel. 334, 126698 (2023). https://doi.org/10.1016/j.fuel.2022.126698

    Article  CAS  Google Scholar 

  11. Çelebi, H.: Recovery of detox tea wastes: Usage as a lignocellulosic adsorbent in Cr6+ adsorption. J. Environ. Chem. Eng. 8, 104310 (2020). https://doi.org/10.1016/j.jece.2020.104310

    Article  CAS  Google Scholar 

  12. Mosoarca, G., Popa, S., Vancea, C., et al.: Removal of Methylene Blue from Aqueous Solutions Using a New Natural Lignocellulosic Adsorbent—Raspberry (Rubus idaeus) Leaves Powder. Polymers. 14, 1966 (2022). https://doi.org/10.3390/polym14101966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guisela, B.Z., DA Ohana, N., Dalvani, S.D., et al.: Adsorption of arsenic anions in water using modified lignocellulosic adsorbents. Results. Eng. 13, 100340 (2022). https://doi.org/10.1016/j.rineng.2022.100340

    Article  CAS  Google Scholar 

  14. Barroso, T.L.C.T., Castro, L.E.N., de Souza Mesquista, L.M., et al.: Simple procedure for the simultaneous extraction and purification of anthocyanins using a jabuticaba byproduct biosorbent. J. Food. Compos. Anal. 130, 106181 (2024). https://doi.org/10.1016/j.jfca.2024.106181

    Article  CAS  Google Scholar 

  15. Liao, Z., Zhang, X., Chen, X., et al.: Recovery of value-added anthocyanins from mulberry by a cation exchange chromatography. Curr. Res. Food. Sci. 5, 1445–1451 (2022). https://doi.org/10.1016/j.crfs.2022.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Valencia-Arredondo, J.A., Hernández-Bolio, G.I., Cerón-Montes, G.I., et al.: Enhanced process integration for the extraction, concentration and purification of di-acylated cyanidin from red cabbage. Sep. Purif. Technol. 238, 116492 (2020). https://doi.org/10.1016/j.seppur.2019.116492

    Article  CAS  Google Scholar 

  17. Lima, J.P., Costa, A.E., Rosso, S.R., et al.: Scale-up and mass transfer of the adsorption/desorption process of anthocyanins in amorphous silica. J. Food. Eng. 317, 110883 (2022). https://doi.org/10.1016/j.jfoodeng.2021.110883

    Article  CAS  Google Scholar 

  18. Akkari, I., Graba, Z., Pazos, M., et al.: Recycling waste by manufacturing biomaterial for environmental engineering: Application to dye removal. Biocatal. Agric. Biotechnol. 50, 102709 (2023). https://doi.org/10.1016/j.bcab.2023.102709

    Article  CAS  Google Scholar 

  19. Akpomie, K.G., Conradie, J.: Banana peel as a biosorbent for the decontamination of water pollutants. Rev. Environ. Chem. Lett. 18, 1085–1112 (2020). https://doi.org/10.1007/s10311-020-00995-x

    Article  CAS  Google Scholar 

  20. Zoroufchi Benis, K., Motalebi Damuchali, A., McPhedran, K.N., Soltan, J.: Treatment of aqueous arsenic – A review of biosorbent preparation methods. J. Environ. Manage. 273, 111126 (2020). https://doi.org/10.1016/j.jenvman.2020.111126

    Article  CAS  PubMed  Google Scholar 

  21. Graba, Z., Akkari, I., Bezzi, N., Kaci, M.M.: Valorization of olive–pomace as a green sorbent to remove Basic Red 46 (BR46) dye from aqueous solution. Biomass. Convers. Biorefin. (2022). https://doi.org/10.1007/s13399-022-03639-y

    Article  Google Scholar 

  22. Akkari, I., Graba, Z., Pazos, M., et al.: NaOH-activated Pomegranate Peel Hydrochar: Preparation, Characterization and Improved Acebutolol Adsorption. Water. Air. Soil. Pollut. 234, 705 (2023). https://doi.org/10.1007/s11270-023-06723-9

    Article  CAS  Google Scholar 

  23. Morseletto, P.: Targets for a circular economy. Resour. Conserv. Recycl. 153, 104553 (2020). https://doi.org/10.1016/j.resconrec.2019.104553

    Article  Google Scholar 

  24. Barroso, T., Sganzerla, W., Rosa, R., et al.: Semi-continuous flow-through hydrothermal pretreatment for the recovery of bioproducts from jabuticaba (Myrciaria cauliflora) agro-industrial by-product. Food. Res. Int. 158, 111547 (2022). https://doi.org/10.1016/j.foodres.2022.111547

    Article  CAS  PubMed  Google Scholar 

  25. Castro, L.E.N., Mançano, R.R., Battocchio, D.A.J., Colpini, L.M.S.: Adsorption of food dye using activated carbon from brewers’ spent grains. Acta. Sc. Technol. 45, e60443 (2022). https://doi.org/10.4025/actascitechnol.v45i1.60443

    Article  Google Scholar 

  26. de Castro, L.E.N., Battocchio, D.A.J., Ribeiro, L.F., Colpini, L.M.S.: Development of adsorbent materials using residue from coffee industry and application in food dye adsorption processes. Braz. Arch. Biol. Technol. 66, e23210125 (2023). https://doi.org/10.1590/1678-4324-2023210125

  27. Lu, Z., Zhang, H., Shahab, A., et al.: Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing Eucalyptus as a precursor. J. Clean. Prod. 303, 127046 (2021). https://doi.org/10.1016/j.jclepro.2021.127046

    Article  CAS  Google Scholar 

  28. Hameed, B.H., Ahmad, A.A., Aziz, N.: Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem. Eng. J. 133, 195–203 (2007). https://doi.org/10.1016/j.cej.2007.01.032

    Article  CAS  Google Scholar 

  29. Jawad, A.H., Saud Abdulhameed, A., Wilson, L.D., et al.: High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chin. J. Chem. Eng. 32, 281–290 (2021). https://doi.org/10.1016/j.cjche.2020.09.070

    Article  CAS  Google Scholar 

  30. Tang, W., Cai, N., Xie, H., et al.: Efficient adsorption removal of Cd 2+ from aqueous solutions by HNO3 modified bamboo-derived biochar. IOP. Conf. Ser. Mater. Sci. Eng. 729, 012081 (2020). https://doi.org/10.1088/1757-899X/729/1/012081

    Article  CAS  Google Scholar 

  31. Lua, A.C., Yang, T.: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid. Interface. Sci. 274, 594–601 (2004). https://doi.org/10.1016/j.jcis.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  32. Ademiluyi, F.T., David-West, E.O.: Effect of Chemical Activation on the Adsorption of Heavy Metals Using Activated Carbons from Waste Materials. ISRN. Chem. Eng. 2012, 1–5 (2012). https://doi.org/10.5402/2012/674209

    Article  CAS  Google Scholar 

  33. Indrayanto G.: Validation of chromatographic methods of analysis: Application for drugs that derived from herbs. In: Brittain, H.G. (ed.) Profiles of drug substances, Excipients and related methodology, vol. 43, pp. 359–392. Academic Press, Cambridge (2018). https://doi.org/10.1016/bs.podrm.2018.01.003

  34. Lagergreen, S.: Zur Theorie der sogenannten Adsorption gelöster Stoffe. Zeitschrift. Für. Chemie. Und. Industrie. Der. Kolloide. 2, 15–15 (1907). https://doi.org/10.1007/BF01501332

    Article  Google Scholar 

  35. Ho, Y.S., McKay, G.: Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70, 115–124 (1998). https://doi.org/10.1016/S0923-0467(98)00076-1

    Article  CAS  Google Scholar 

  36. Cestari, A.R., Vieira, E.F.S., Lopes, E.C.N., da Silva, R.G.: Kinetics and equilibrium parameters of Hg(II) adsorption on silica–dithizone. J. Colloid. Interface. Sci. 272, 271–276 (2004). https://doi.org/10.1016/j.jcis.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  37. Low, M.J.D.: Kinetics of chemisorption of gases on solids. Chem. Rev. 60, 267–312 (1960). https://doi.org/10.1021/cr60205a003

    Article  CAS  Google Scholar 

  38. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes, 1st edn. Wiley & Sons Ltd, New Jersey (1984)

    Google Scholar 

  39. Langmuir, I.: THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. J. Am. Chem. Soc. 38, 2221–2295 (1916). https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  40. Freundlich, H.M.F.: Over the Adsorption in Solution. J. Phys. Chem. 57, 385–471 (1906)

  41. Nguyen, C., Do, D.D.: The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon. 39, 1327–1336 (2001). https://doi.org/10.1016/S0008-6223(00)00265-7

    Article  CAS  Google Scholar 

  42. Wakkel, M., Khiari, B., Zagrouba, F.: Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J. Taiwan. Inst. Chem. Eng. 96, 439–452 (2019). https://doi.org/10.1016/j.jtice.2018.12.014

    Article  CAS  Google Scholar 

  43. Georgin, J., Franco, D.S.P., Schadeck Netto, M., et al.: Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4-dichlorophenoxyacetic acid herbicide. J. Environ. Chem. Eng. 9, 104574 (2021). https://doi.org/10.1016/j.jece.2020.104574

    Article  CAS  Google Scholar 

  44. Caponi, N., Silva, L.F.O., Oliveira, M.L.S., et al.: Adsorption of basic fuchsin using soybean straw hydrolyzed by subcritical water. Environ. Sci. Pollut. Res. 29, 68547–68554 (2022). https://doi.org/10.1007/s11356-022-20652-w

    Article  CAS  Google Scholar 

  45. de Aguiar Linhares, F., Romeu Marcílio, N., Juarez Melo, P.: Estudo da produção de carvão ativado a partir do resíduo de casca da acácia negra com e sem ativação química. Scientia. Cum. Industria. 4, 74–79 (2016). https://doi.org/10.18226/23185279.v4iss2p74

  46. Kharrazi, S.M., Mirghaffari, N., Dastgerdi, M.M., Soleimani, M.: A novel post-modification of powdered activated carbon prepared from lignocellulosic waste through thermal tension treatment to enhance the porosity and heavy metals adsorption. Powder. Technol. 366, 358–368 (2020). https://doi.org/10.1016/j.powtec.2020.01.065

    Article  CAS  Google Scholar 

  47. Isinkaralar, K., Gullu, G., Turkyilmaz, A.: Experimental study of formaldehyde and BTEX adsorption onto activated carbon from lignocellulosic biomass. Biomass. Convers. Biorefin. 13, 4279–4289 (2023). https://doi.org/10.1007/s13399-021-02287-y

    Article  CAS  Google Scholar 

  48. Thommes, M., Kaneko, K., Neimark, A.V., et al.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure. Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  49. Zulkefli, N.N., Mathuray Veeran, L.S., Noor Azam, A.M.I., et al.: Effect of Bimetallic-Activated Carbon Impregnation on Adsorption-Desorption Performance for Hydrogen Sulfide (H2S) Capture. Materials. 15, 5409 (2022). https://doi.org/10.3390/ma15155409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roque-Malherbe, R.M.: Adsorption and Diffusion in Nanoporous Materials. CRC Press, Boca Raton, FL, USA (2007)

    Book  Google Scholar 

  51. Baek, J., Lee, H.-M., An, K.-H., Kim, B.-J.: Preparation and characterization of highly mesoporous activated short carbon fibers from kenaf precursors. Carbon. Lett. 29, 393–399 (2019). https://doi.org/10.1007/s42823-019-00042-y

    Article  Google Scholar 

  52. Lim, W.C., Srinivasakannan, C., Al Shoaibi, A.: Cleaner production of porous carbon from palm shells through recovery and reuse of phosphoric acid. J. Clean. Prod. 102, 501–511 (2015). https://doi.org/10.1016/j.jclepro.2015.04.100

    Article  CAS  Google Scholar 

  53. Neme, I., Gonfa, G., Masi, C.: Activated carbon from biomass precursors using phosphoric acid: A review. Heliyon. 8, e11940 (2022). https://doi.org/10.1016/j.heliyon.2022.e11940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saleh, M., Isik, Z., Yabalak, E., et al.: Green production of hydrochar nut group from waste materials in subcritical water medium and investigation of their adsorption performance for crystal violet. Water. Environ. Res. 93, 3075–3089 (2021). https://doi.org/10.1002/wer.1659

    Article  CAS  PubMed  Google Scholar 

  55. Ouachtak, H., El Guerdaoui, A., El Haouti, R., et al.: Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC. Adv. 13, 5027–5044 (2023). https://doi.org/10.1039/D2RA08059A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ge, L., Zhao, C., Zhou, T., et al.: An analysis of the carbonization process of coal-based activated carbon at different heating rates. Energy. 267, 126557 (2023). https://doi.org/10.1016/j.energy.2022.126557

    Article  CAS  Google Scholar 

  57. Sh. Gohr, M., Abd-Elhamid, A.I., El-Shanshory, A.A., Soliman, H.M.A.: Adsorption of cationic dyes onto chemically modified activated carbon: Kinetics and thermodynamic study. J. Mol. Liq. 346, 118227 (2022). https://doi.org/10.1016/j.molliq.2021.118227

  58. Jayarambabu, N., Saraswathi, K., Akshaykranth, A., et al.: Bamboo-mediated silver nanoparticles functionalized with activated carbon and their application for non-enzymatic glucose sensing. Inorg. Chem. Commun. 147, 110249 (2023). https://doi.org/10.1016/j.inoche.2022.110249

    Article  CAS  Google Scholar 

  59. Wang, K., Ma, H., Pu, S., et al.: Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. J. Hazard. Mater. 362, 160–169 (2019). https://doi.org/10.1016/j.jhazmat.2018.08.067

    Article  CAS  PubMed  Google Scholar 

  60. Khalid, B., Meng, Q., Akram, R., Cao, B.: Effects of KOH activation on surface area, porosity and desalination performance of coconut carbon electrodes. Desalination. Water. Treat. 57, 2195–2202 (2016). https://doi.org/10.1080/19443994.2014.979448

    Article  CAS  Google Scholar 

  61. Yanou Rachel, N., Abdelaziz, B., Julius Nsami, N. et al.: Antibacterial properties of AgNO3-activated carbon composite on Escherichia coli: Inhibition action. Int. J. Ad. Chem. 6, 46–52 (2018). https://doi.org/10.14419/ijac.v6i1.9048

  62. Chen, W., Zhang, X., Mamadiev, M., Wang, Z.: Sorption of perfluorooctane sulfonate and perfluorooctanoate on polyacrylonitrile fiber-derived activated carbon fibers: in comparison with activated carbon. RSC. Adv. 7, 927–938 (2017). https://doi.org/10.1039/C6RA25230C

    Article  CAS  Google Scholar 

  63. Tan, C., Li, D., Wang, H., et al.: Effects of high hydrostatic pressure on the binding capacity, interaction, and antioxidant activity of the binding products of cyanidin-3-glucoside and blueberry pectin. Food. Chem. 344, 128731 (2021). https://doi.org/10.1016/j.foodchem.2020.128731

    Article  CAS  PubMed  Google Scholar 

  64. Dziekońska-Kubczak, U., Berłowska, J., Dziugan, P., et al.: Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production. Energies (Basel) 11, 2153 (2018). https://doi.org/10.3390/en11082153

    Article  CAS  Google Scholar 

  65. Saleem, J., Bin, S.U., Hijab, M., et al.: Production and applications of activated carbons as adsorbents from olive stones. Biomass. Convers. Biorefin. 9, 775–802 (2019). https://doi.org/10.1007/s13399-019-00473-7

    Article  CAS  Google Scholar 

  66. Khanday, W.A., Ahmed, M.J., Okoye, P.U., et al.: Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic. Bioresour. Technol. 280, 255–259 (2019). https://doi.org/10.1016/j.biortech.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y., Yuan, X., Xu, Y., Yu, Z.: Purification of Anthocyanins from Extracts of Red Raspberry Using Macroporous Resin. Int. J. Food. Prop. 18, 1046–1058 (2015). https://doi.org/10.1080/10942912.2013.862632

    Article  CAS  Google Scholar 

  68. Wu, H., Di, Q.R., Zhong, L. et al.: Enhancement on antioxidant, anti-hyperglycemic and antibacterial activities of blackberry anthocyanins by processes optimization involving extraction and purification. Front. Nutr. 9, 1007691 (2022). https://doi.org/10.3389/fnut.2022.1007691

  69. Dermengiu, N.E., Milea Ștefania, A., Burada, B.P., et al.: A dark purple multifunctional ingredient from blueberry pomace enhanced with lactic acid bacteria for various applications. J. Food Sci. 87, 4725–4737 (2022). https://doi.org/10.1111/1750-3841.16315

    Article  CAS  PubMed  Google Scholar 

  70. Carvalho, V.V.L., Gonçalves, J.O., Silva, A., et al.: Separation of anthocyanins extracted from red cabbage by adsorption onto chitosan films. Int. J. Biol. Macromol. 131, 905–911 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.145

    Article  CAS  PubMed  Google Scholar 

  71. Castro, L.E.N., Sganzerla, W.G., Costa, J.M., et al.: Adsorbents for the purification and recovery of biocompounds: An updated review. Biofuels. Bioprod. Biorefin. 18, 265–290 (2024). https://doi.org/10.1002/bbb.2554

    Article  CAS  Google Scholar 

  72. Qanytah, S.K., Fahma, F., Pari, G.: Ethylene Adsorption on Activated Carbon Paper Liner: A Model Kinetic Study. IOP. Conf. Ser. Earth. Environ. Sci. 1024, 012022 (2022). https://doi.org/10.1088/1755-1315/1024/1/012022

    Article  Google Scholar 

  73. Gonçalves, J.O., da Silva, K.A., Rios, E.C., et al.: Chitosan hydrogel scaffold modified with carbon nanotubes and its application for food dyes removal in single and binary aqueous systems. Int. J. Biol. Macromol. 142, 85–93 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.074

    Article  CAS  PubMed  Google Scholar 

  74. Capello, C., Leandro, G.C., Maduro Campos, C.E., et al.: Adsorption and desorption of eggplant peel anthocyanins on a synthetic layered silicate. J. Food. Eng. 262, 162–169 (2019). https://doi.org/10.1016/j.jfoodeng.2019.06.010

    Article  CAS  Google Scholar 

  75. Das, A.B., Goud, V.V., Das, C.: Adsorption/desorption, diffusion, and thermodynamic properties of anthocyanin from purple rice bran extract on various adsorbents. J. Food. Process. Eng. 41, e12834 (2018). https://doi.org/10.1111/jfpe.12834

  76. Pinheiro, C.P., Moreira, L.M.K., Alves, S.S., et al.: Anthocyanins concentration by adsorption onto chitosan and alginate beads: Isotherms, kinetics and thermodynamics parameters. Int. J. Biol. Macromol. 166, 934–939 (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.250

    Article  CAS  PubMed  Google Scholar 

  77. Coelho Leandro, G., Capello, C., Luiza Koop, B., et al.: Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: Kinetic models, physicochemical characterization, and functional properties of biohybrids. Food. Res. Int. 140, 109903 (2021). https://doi.org/10.1016/j.foodres.2020.109903

    Article  CAS  PubMed  Google Scholar 

  78. Jampani, C., Naik, A., Raghavarao, K.S.M.S.: Purification of anthocyanins from jamun (Syzygium cumini L.) employing adsorption. Sep. Purif. Technol. 125, 170–178 (2014). https://doi.org/10.1016/j.seppur.2014.01.047

    Article  CAS  Google Scholar 

  79. Li, Y., Zhang, H., Zhao, Y., et al.: Encapsulation and Characterization of Proanthocyanidin Microcapsules by Sodium Alginate and Carboxymethyl Cellulose. Foods. 13, 740 (2024). https://doi.org/10.3390/foods13050740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Haroon, H., Ashfaq, T., Gardazi, S.M.H., et al.: Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors. Korean. J. Chem. Eng. 33, 2898–2907 (2016). https://doi.org/10.1007/s11814-016-0160-0

    Article  CAS  Google Scholar 

  81. Manzotti, F., dos Santos, O.A.A.: Evaluation of removal and adsorption of different herbicides on commercial organophilic clay. Chem. Eng. Commun. 206, 1515–1532 (2019). https://doi.org/10.1080/00986445.2019.1601626

    Article  CAS  Google Scholar 

  82. Castro, L.E.N., Matheus, L.R., Mançano, R.R., et al.: Single-Step Modification of Brewer’s Spent Grains Using Phosphoric Acid and Application in Cheese Whey Remediation via Liquid-Phase Adsorption. Water. 15, 3682 (2023). https://doi.org/10.3390/w15203682

    Article  CAS  Google Scholar 

  83. Aniagor, C.O., Abdulgalil, A.G.M., Safri, A., et al.: Preparation of amidoxime modified biomass and subsequent investigation of their lead ion adsorption properties. Clean. Chem. Eng. 2, 100013 (2022). https://doi.org/10.1016/j.clce.2022.100013

    Article  Google Scholar 

  84. Caponi, N., Schnorr, C., Franco, D.S.P., et al.: Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions. J. Environ. Chem. Eng. 10, 108603 (2022). https://doi.org/10.1016/j.jece.2022.108603

    Article  CAS  Google Scholar 

  85. Nan, M.-N., Bi, Y., Qiang, Y., et al.: Electrostatic adsorption and removal mechanism of ochratoxin A in wine via a positively charged nano-MgO microporous ceramic membrane. Food. Chem. 371, 131157 (2022). https://doi.org/10.1016/j.foodchem.2021.131157

    Article  CAS  PubMed  Google Scholar 

  86. Alisaac, A., Alsahag, M., Alshareef, M., et al.: Development of smart cotton fabrics immobilized with anthocyanin and potassium alum for colorimetric detection of bacteria. Inorg. Chem. Commun. 145, 110023 (2022). https://doi.org/10.1016/j.inoche.2022.110023

    Article  CAS  Google Scholar 

  87. Ascheri, D.P.R., Ascheri, J.L.R., de Carvalho, C.W.P.: Caracterização da farinha de bagaço de jabuticaba e propriedades funcionais dos extrusados. Ciênc. Tecnol. Aliment. 26, 897–905 (2006). https://doi.org/10.1590/S0101-20612006000400029

    Article  Google Scholar 

  88. Wahyuningsih, S., Wulandari, L., Wartono, M.W., et al.: The Effect of pH and Color Stability of Anthocyanin on Food Colorant. IOP. Conf. Ser. Mater. Sci. Eng. 193, 012047 (2017). https://doi.org/10.1088/1757-899X/193/1/012047

    Article  Google Scholar 

  89. Olivas-Aguirre, F., Rodrigo-García, J., Martínez-Ruiz, N., et al.: Cyanidin-3-O-glucoside: Physical-Chemistry. Foodom. Health. Eff. Molec. 21, 1264 (2016). https://doi.org/10.3390/molecules21091264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Science and Research Foundation (CNPq, Brazil) (productivity grants 302451/2021-8 and 402638/2023-9); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) (Finance code 001); São Paulo Research Foundation (FAPESP, Brazil) (grant numbers 2018/14582‐5 for M.A.R; 2019/14938-4 for T.F.C.; 2020/16248-5 for T.L.C.T.B.; and 2021/04096-9 for L.E.N.C.).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tiago Linhares Cruz Tabosa Barroso, Luiz Eduardo Nochi Castro, Mauricio Ariel Rostagno, and Tânia Forster-Carneiro; Methodology: Tiago Linhares Cruz Tabosa Barroso and Luiz Eduardo Nochi Castro; Formal analysis and investigation: Tiago Linhares Cruz Tabosa Barroso, Luiz Eduardo Nochi Castro, José Romualdo de Sousa Lima, and Leda Maria Saragiotto Colpini; Writing—original draft preparation: Tiago Linhares Cruz Tabosa Barroso, Luiz Eduardo Nochi Castro, José Romualdo de Sousa Lima, and Leda Maria Saragiotto Colpini; Writing—review and editing: Mauricio Ariel Rostagno and Tânia Forster-Carneiro; Funding acquisition: Mauricio Ariel Rostagno and Tânia Forster-Carneiro; Resources: Mauricio Ariel Rostagno and Tânia Forster-Carneiro; Supervision: Mauricio Ariel Rostagno and Tânia Forster-Carneiro.

Corresponding authors

Correspondence to Mauricio Ariel Rostagno or Tânia Forster-Carneiro.

Ethics declarations

Ethical approval

All authors have been personally and actively involved in the work leading to the paper and will take public responsibility for its content.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barroso, T.L.C.T., Castro, L.E.N., Lima, J.R.d.S. et al. Synthesis and Optimization of biosorbent using jabuticaba peel (Myrciaria cauliflora) for anthocyanin recovery through adsorption. Adsorption (2024). https://doi.org/10.1007/s10450-024-00491-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10450-024-00491-6

Keywords

Navigation