Skip to main content
Log in

Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

This paper presents a technique for accelerating coalbed methane (CBM) desorption to increase extraction efficiency using microwaves. Methane desorption experiments with and without real-time microwave loading (ML) were carried out in the laboratory. To avoid high temperatures in the samples, ML was employed via two modes; continuous ML (CML) with low power and discontinuous ML (DML) with high power. The results show that total desorption volumes were increased from 1.87 to 3.26 times under CML and from 1.91 to 4.13 times under DML. The desorption rate using CML decreased smoothly like the rate without ML but the desorption rate was higher. The DML caused the desorption rate to increase rapidly and sharp peaks were evident on its desorption rate graph. For DML, the maximum desorption rate increased by a factor of 10.8. Kinetic analysis indicated that both CML and DML increased the diffusion coefficient and reduced diffusion attenuation. For the same microwave output energy, DML with short-term microwave bursts with high power has a better stimulating effect on methane desorption than CML. That ML significantly enhances methane desorption indicates that ML can greatly improve CBM productivity, and thus it has the potential to become a new CBM stimulation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexeev, A., Feldman, E., Vasilenko, T.: Methane desorption from a coal-bed. Fuel 86, 2574–2780 (2007)

    Article  CAS  Google Scholar 

  • Cai, Y., Pan, Z., Liu, D., Zheng, G., Tang, S., Connell, L., Yao, Y., Zhou, Y.: Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery. Energy Explor. Exploit. 32, 601–619 (2014a)

    Article  CAS  Google Scholar 

  • Cai, Y., Liu, D., Yao, Y., Li, Z., Pan, Z.: Partial coal pyrolysis and its implication to enhance coalbed methane recovery. Part I Exp. Investig. Fuel 132, 12–19 (2014b)

    CAS  Google Scholar 

  • Cheng, Y., Lu, Y., Ge, Z., Cheng, L., Zheng, J., Zhang, W.: Experimental study on crack propagation control and mechanism analysis of directional hydraulic fracturing. Fuel 218, 316–324 (2018)

    Article  CAS  Google Scholar 

  • Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    Google Scholar 

  • Deng, J., Kang, J., Zhou, F., Li, H., Zhang, D., Li, G.: The adsorption heat of methane on coal: comparison of theoretical and calorimetric heat and model of heat flow by microcalorimeter. Fuel 237, 81–90 (2019)

    Article  CAS  Google Scholar 

  • Dong, J., Cheng, Y., Liu, Q., Zhang, H., Zhang, K., Hu, B.: Apparent and true diffusion coefficients of methane in coal and their relationships with methane desorption capacity. Energy Fuels 31, 2643–2651 (2017)

    Article  CAS  Google Scholar 

  • Faiz, M., Saghaf, A., Sherwood, N.: The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia. Int. J. Coal Geol. 70, 193–208 (2007)

    Article  CAS  Google Scholar 

  • Fei, Y., Johnson, J., Gonzalez, M., Haghighi, M., Pokalai, K.: Experimental and numerical investigation into nano-stabilized foams in low permeability reservoir hydraulic fracturing applications. Fuel 213, 133–143 (2018)

    Article  CAS  Google Scholar 

  • Guo, J., Kang, T., Kang, J., Chai, Z., Zhao, G.: Accelerating methane desorption in lump anthracite modified by electrochemical treatment. Int. J. Coal Geol. 131, 392–399 (2014)

    Article  CAS  Google Scholar 

  • Guo, X., Ren, J., Xie, C., Lin, J., Li, Z.: A comparison study on the deoxygenation of coal mine methane over coal gangue and coke under microwave heating conditions. Energy Convers. Manag. 100, 45–55 (2015)

    Article  CAS  Google Scholar 

  • He, X., Zhang, L.: Study on the effects of electromagnetic fields on gas adsorption and emission and its mechanism. J. China Coal Soc. 6, 614–618 (2000)

    Google Scholar 

  • Hong, Y., Lin, B., Zhu, C., Li, H.: Influence of microwave energy on fractal dimension of coal cores: implications from nuclear magnetic resonance. Energy Fuels 30, 10253–10259 (2016)

    Article  CAS  Google Scholar 

  • Hu, G., Zhu, Y., Xu, J., Qin, W.: Mechanism of the controlled microwave field enhancing gas desorption and diffusion in coal. J. China Univ. Min. Technol. 46, 433–438 (2017)

    Google Scholar 

  • Huang, W., Yan, S., Liu, Z.: Research and application of water gel explosive grain on coal mine gas extraction in coal seam deep hole blasting. J. China Coal Soc. 37, 472–476 (2012)

    Google Scholar 

  • Jiang, Y., Yang, X., Xian, X., Xiong, L., Yi, J.: The infiltration equation of coalbed under the cooperation of stress field, temperature field and sound field. J. China Coal Soc. 35, 434–438 (2010)

    Google Scholar 

  • Jiang, Y., Song, X., Liu, H., Cui, Y.: Laboratory measurements of methane desorption on coal during acoustic stimulation. Int. J. Rock Mech. Min. Sci. 78, 10–18 (2015)

    Article  Google Scholar 

  • Kumar, H., Lester, E., Kingman, S., Bourne, R., Avila, C., Jones, A., Robinson, J., Halleck, P., Mathews, J.: Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy. Int. J. Coal Geol. 88, 75–82 (2011)

    Article  CAS  Google Scholar 

  • Li, C., Kang, J., Qi, Q.: The numerical analysis of borehole blasting and application in coal mine roof-weaken. Proc. Earth Planet. Sci. 1, 451–459 (2009)

    Article  Google Scholar 

  • Li, H., Lin, B., Hong, Y., Yang, W., Liu, T., Huang, Z., Wang, R.: Effect of microwave irradiation on pore and fracture evolutions of coal. J. China Univ. Min. Technol. 46, 1194–1201 (2017a)

    Google Scholar 

  • Li, H., Lin, B., Chen, Z., Hong, Y., Zheng, C.: Evolution of coal petrophysical properties under microwave irradiation stimulation for different water saturation conditions. Energy Fuels 31, 8852–8864 (2017b)

    Article  CAS  Google Scholar 

  • Li, Z., Wang, D., Song, D.: Influence of temperature on dynamic diffusion coefficient of CH4 into coal particles by new diffusion model. J. China Coal Soc. 40, 1055–1064 (2015)

    CAS  Google Scholar 

  • Li, Z., Liu, Y., Xu, Y., Song, D.: Gas diffusion mechanism in multi-scale pores of coal particles and new diffusion model of dynamic diffusion coefficient. J. China Coal Soc. 41, 635–645 (2016)

    Google Scholar 

  • Liu, J., Wang, C.: Experimental measurement of temperature change in gas desorption process. Coal Mine Saf. 44, 5–7 (2013)

    Google Scholar 

  • Liu, J., Zhu, J., Cheng, J., Zhou, J., Cen, K.: Pore structure and fractal analysis of Ximeng lignite under microwave irradiation. Fuel 146, 41–50 (2015)

    Article  CAS  Google Scholar 

  • Ma, D., Zhang, S., Wang, P., Lin, Y., Wang, C.: Temperature effect of desorption of coalbed methane. Coalf. Geol. Explor. 39, 20–23 (2011)

    CAS  Google Scholar 

  • Mazzotti, M., Pini, R., Storti, G.: Enhanced coalbed methane recovery. J. Supercrit. Fluids 47, 619–627 (2009)

    Article  CAS  Google Scholar 

  • Moore, T.: Coalbed methane: a review. Int. J. Coal Geol. 101, 36–81 (2012)

    Article  CAS  Google Scholar 

  • Pan, J., Hou, Q., Ju, Y., Bai, H., Zhao, Y.: Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel 102, 760–765 (2012)

    Article  CAS  Google Scholar 

  • Pillalamarry, M., Harpalani, S., Liu, S.: Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs. Int. J. Coal Geol. 86, 342–348 (2011)

    Article  CAS  Google Scholar 

  • Sakurovs, R., Day, S., Weir, S., Duffy, G.: Temperature dependence of sorption of gases by coals and charcoals. Int. J. Coal Geol. 73, 250–258 (2008)

    Article  CAS  Google Scholar 

  • Senthamaraikkannan, G., Gates, I., Prasad, V.: Development of a multiscale microbial kinetics coupled gas transport model for the simulation of biogenic coalbed methane production. Fuel 167, 188–198 (2016)

    Article  CAS  Google Scholar 

  • Seo, Y., Kim, D., Koh, D., Lee, J., Ahn, T., Kim, S., Lee, J., Lee, H.: Soaking process for the enhanced methane recovery of gas hydrates via CO2/N2 gas injection. Energy Fuels 29, 8143–8150 (2016)

    Article  CAS  Google Scholar 

  • Shen, C., Lin, B., Zhang, Q., Yang, W., Zhang, L.: Induced drill-spray during hydraulic slotting of a coal seam and its influence on gas extraction. Int. J. Min. Sci. Technol. 22, 785–791 (2012)

    Article  Google Scholar 

  • Shi, J., Durucan, S.: A bidisperse pore diffusion model for methane displacement desorption in coal by CO2 injection. Fuel 82, 1219–1229 (2003)

    Article  CAS  Google Scholar 

  • Tang, X., Li, Z., Ripepi, N., Louk, A., Wang, Z., Song, D.: Temperature-dependent diffusion process of methane through dry crushed coal. J. Natl. Gas Sci. Eng. 22, 609–617 (2015)

    Article  CAS  Google Scholar 

  • Wang, S., Zhou, F., Kang, J., Wang, X., Li, H., Wang, J.: A heat transfer model of high-temperature nitrogen injection into a methane drainage borehole. J. Natl. Gas Sci. Eng. 24, 449–456 (2015)

    Article  CAS  Google Scholar 

  • Wang, Z., Ma, X., Wei, J., Li, N.: Microwave irradiation’s effect on promoting coalbed methane desorption and analysis of desorption kinetics. Fuel 222, 56–63 (2018)

    Article  CAS  Google Scholar 

  • Yang, T., Chen, P., Li, B., Nie, B., Zhu, C., Ye, Q.: Potential safety evaluation method based on temperature variation during gas adsorption and desorption on coal surface. Saf. Sci. 113, 336–344 (2019)

    Article  Google Scholar 

  • Yang, X., Zhang, Y.: Numerical simulation on flow rules of coal-bed methane by thermal stimulation. J. China Univ. Min. Technol. 40, 89–94 (2011)

    Google Scholar 

  • Yang, X., Ren, C., Zhang, Y., Guo, R.: Numerical simulation of the coupled thermal fluid-solid mathematical models during extracting methane in low permeability coal bed by heat injection. J. China Coal Soc. 38, 1044–1049 (2013)

    Google Scholar 

  • Yue, G., Wang, Z., Xie, C., Tang, X., Yuan, J.: Time-dependent methane diffusion behavior in coal: measurement and modeling. Transp. Porous Med. 116, 319–333 (2017)

    Article  CAS  Google Scholar 

  • Zhang, F., Wu, Y., Mao, X., Zhang, L., Yao, B.: Coupled thermal-hydrological mechanical analysis of exploiting coal methane by heat injection. J. Min. Saf. Eng. 29, 505–510 (2012)

    Google Scholar 

  • Zhou, F., Hussain, F., Cinar, Y.: Injecting pure N2 and CO2 to coal for enhanced coalbed methane: experimental observations and numerical simulation. Int. J. Coal Geol. 116, 53–62 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51404101), Fundamental Research Funds for the Universities of Henan Province (NSFRF180302), China Postdoctoral Science Foundation (2015M572106), Henan Postdoctoral Foundation (2015056) and the State Key Laboratory Cultivation Base for Gas Geology and Gas Control (Henan Polytechnic University) (WS2017B09, WS2013B02). We thank David Frishman, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, X., Ma, X. et al. Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading. Adsorption 26, 61–73 (2020). https://doi.org/10.1007/s10450-019-00173-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00173-8

Keywords

Navigation