Skip to main content
Log in

Multicomponent adsorption modeling: isotherms for ABE model solutions using activated carbon F-400

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Biobutanol has attracted significant interest in recent decades and is seriously considered as a potential biofuel to partly replace gasoline. However, some production challenges must be addressed to make butanol economically viable such as the low product concentration and product toxicity inhibiting the microorganism. To alleviate these limitations, several in situ or ex situ separation techniques have been investigated in view of their integration to the biobutanol production process to enhance its economic viability. One of these techniques is adsorption which is one of the most energy-efficient techniques used for biobutanol separation. Considering the number of chemical species present in the ABE fermentation broth, it is essential to develop multicomponent adsorption isotherms for all components as a first step to design a high performance adsorption process. Few multicomponent isotherm models have been proposed such as multicomponent Langmuir and Freundlich. In this study, these two models as well as artificial neural networks were used to model the isotherms of each component in an ABE fermentation broth as a function of the equilibrium concentrations of all components for activated carbon F-400. Results showed that the multicomponent Langmuir model was not accurate due to the many simplifying assumptions. The multicomponent Freundlich and feedforward neural network (FFNN) isotherm models were able to predict the behavior of multicomponent systems very well. Indeed, the predictive model of the experimental data had a coefficient of determination (R2) of 0.97 and 0.99, for multicomponent Freundlich and FFNN isotherm models, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABE:

Acetone–butanol–ethanol

ANN:

Artificial neural network

FFNN:

Feed forward neural network

HL:

High level

LL:

Low level

SC:

Single component

a ij :

Competition coefficient in multicomponent Freundlich isotherm model

b :

Constant in multicomponent Langmuir isotherm model (L/g adsorbate)

C :

Adsorbate concentration at equilibrium (g/L)

\(\overline{C}\) :

Normalized adsorbate concentration at equilibrium (g/L)

C*:

Adsorbate concentration in equilibrium with adsorbed phase concentration q (g/L)

n :

Constant in multicomponent Freundlich isotherm model

K :

Constant in multicomponent Freundlich isotherm model (L/g adsorbent)

q :

Adsorption capacity (g adsorbate/g adsorbent)

q*:

Adsorption capacity in equilibrium with bulk liquid concentration C (g adsorbate/g adsorbent)

q s :

Saturation adsorption capacity (g adsorbate/g adsorbent)

\(\overline{q}\) :

Normalized adsorption capacity (g adsorbate/g adsorbent)

W :

Weights in FFNN model

References

  • Abdehagh, N., Tezel, F.H., Thibault, J.: Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19, 1263–1272 (2013)

    Article  CAS  Google Scholar 

  • Abdehagh, N., Tezel, F.H., Thibault, J.: Separation techniques in butanol production: challenges and developments (review). Biomass Bioenergy 60, 222–246 (2014)

    Article  CAS  Google Scholar 

  • Abdehagh, N., Gurnani, P., Tezel, F.H., Thibault, J.: Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption 21, 185–194 (2015)

    Article  CAS  Google Scholar 

  • Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes (mini review). Appl. Microbiol. Biotechnol. 77, 23–35 (2007)

    Article  CAS  Google Scholar 

  • Basu, S., Henshaw, P.F., Biswas, N., Kwan, H.K.: Prediction of gas phase adsorption isotherms using neural nets. Can. J. Chem. Eng. 80, 1–7 (2002)

    Article  Google Scholar 

  • Bulsari, A.B., Palosaafi, A.: Application of neural networks for system identification of an adsorption column. Neural Comput. Appl. 1, 160–165 (1993)

    Article  Google Scholar 

  • Carsky, M., Do, D.D.: Neural network modeling of adsorption of binary vapour mixtures. Adsorption 5, 183–192 (1999)

    Article  CAS  Google Scholar 

  • Dellomonaco, C., Fava, F., Gonzalez, R.: The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb. Cell Fact. 9, 3 (2010)

    Article  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  • Dürre, P.: Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525–1534 (2007)

    Article  Google Scholar 

  • Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J. Microbiol. Biotechnol. 19, 595–603 (2003)

    Article  CAS  Google Scholar 

  • Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Butanol fermentation research: upstream and downstream manipulations. Chem. Rec. 4, 305–314 (2004)

    Article  CAS  Google Scholar 

  • Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 18, 220–227 (2007)

    Article  CAS  Google Scholar 

  • Fouad, E.A., Feng, X.: Use of pervaporation to separate butanol from dilutes aqueous solutions: effects of operating conditions and concentration polarization. J. Membr. Sci. 323, 428–435 (2008)

    Article  CAS  Google Scholar 

  • Freundlich, H.M.F.: Über die adsorption in Lösungen. Z. Phys. Chem. 57(A), 385–470 (1906)

    CAS  Google Scholar 

  • Groot, W.J., Luyben, K.Ch.A.M.: In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 25, 29–31 (1986)

    CAS  Google Scholar 

  • Harvey, B.G., Meylemans, H.A.: The role of butanol in the development of sustainable fuel technologies. J. Chem. Technol. Biotechnol. 86, 2–9 (2011)

    Article  CAS  Google Scholar 

  • Holtzapple, M.T., Brown, R.F.: Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite. Sep. Technol. 4, 213–229 (1995)

    Article  Google Scholar 

  • Jiao, P., Wu, J., Zhou, J., Yang, P., Zhuang, W., Chen, Y., Zhu, C., Guo, T., Ying, H.: Mathematical modeling of the competitive sorption dynamics of acetone–butanol–ethanol on KA-I resin in a fixed-bed column. Adsorption 21, 165–176 (2015)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1402 (1918)

    Article  CAS  Google Scholar 

  • Lewandowski, J., Lemcoff, N.O., Palosaari, S.: Use of neural networks in the simulation and optimization of pressure swing adsorption processes. Chem. Eng. Technol. 21(7), 593–597 (1998)

    Article  CAS  Google Scholar 

  • Lim, B.G., Ching, C.B., Tan, R.B.H.: Determination of competitive adsorption isotherms of enantiomers on dual-side adsorbent. Sep. Technol. 5, 213–228 (1995)

    Article  CAS  Google Scholar 

  • Maddox, I.S.: Use of silicalite for the adsorption of n-butanol from fermentation liquids. Biotechnol. Lett. 4, 759–760 (1982)

    Article  CAS  Google Scholar 

  • Morse, G., Jones, R., Thibault, J., Tezel, F.H.: Neural network modelling of adsorption isotherms. Adsorption 17, 303–309 (2011)

    Article  CAS  Google Scholar 

  • Nielsen, L., Larsson, M., Hoist, O., Mattiasson, B.: Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Appl. Microbiol. Biotechnol. 28, 335–339 (1988)

    Article  CAS  Google Scholar 

  • Nielsen, D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102, 811–821 (2009)

    Article  CAS  Google Scholar 

  • Oudshoorn, A., Van der Wielen, L.A.M., Straathof, A.J.J.: Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem. Eng. J. 48, 99–103 (2009)

    Article  CAS  Google Scholar 

  • Oudshoorn, A., Van derWielen, L.A.M., Straathof, A.J.J.: Desorption of butanol from zeolite material. Biochem. Eng. J. 67, 167–172 (2012)

    Article  CAS  Google Scholar 

  • Qureshi, N., Blaschek, H.P.: Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol. Prog. 15, 594–602 (1999)

    Article  CAS  Google Scholar 

  • Qureshi, N., Hughes, S., Maddox, I.S., Cotta, M.A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst. Eng. 27, 215–222 (2005)

    Article  CAS  Google Scholar 

  • Remi, J.C.S., Remy, T., Van Hunskerken, V., Van de Perre, S., Duerinck, T., Maes, M., De Vos, D., Gobechiya, E., Kirschock, C.E.A., Baron, G.V., Denayer, J.F.M.: Biobutanol separation with the metal-organic framework ZIF-8. ChemSusChem 4, 1074–1077 (2011)

    Article  Google Scholar 

  • Remi, J.C.S., Baron, G.V., Denayer, J.F.M.: Adsorptive separation for the recovery and purification of biobutanol. Adsorption 18, 367–373 (2012)

    Article  Google Scholar 

  • Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1984)

    Google Scholar 

  • Saravanan, V., Waijers, D.A., Ziari, M., Noordermeer, M.A.: Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. Biochem. Eng. J. 49, 33–39 (2010)

    Article  CAS  Google Scholar 

  • Shapovalov, O.I., Ashkinazi, L.A.: Biobutanol: biofuel of second generation. Russ. J. Appl. Chem. 81(12), 2232–2236 (2008)

    Article  CAS  Google Scholar 

  • Sharma, P., Chung, W.J.: Synthesis of MEL type zeolite with different kinds of morphology for the recovery of 1-butanol from aqueous solution. Desalination 275, 172–180 (2011)

    Article  CAS  Google Scholar 

  • Sowerby, B., Crittenden, B.D.: Vapour phase separation of alcohol water mixtures by adsorption onto silicalite. Gas Sep. Purif. 2, 177–183 (1988)

    Article  Google Scholar 

  • Thompson, A.B., Cope, S.J., Swift, T.D., Notestein, J.M.: Adsorption of n-butanol from dilute aqueous solution with grafted calixarenes. Langmuir 27, 11990–11998 (2011)

    Article  CAS  Google Scholar 

  • Wu, X.-H., Lin, B.-C.: Model modification of binary competitive isotherm. J. Liquid Chromatogr. Relat. Technol. 32, 2465–2483 (2009)

    Article  CAS  Google Scholar 

  • Wu, J., Zhuang, W., Ying, H.: Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol. Prog. 31(1), 124–134 (2014)

    Article  Google Scholar 

  • Yang, M., Hubble, J., Fang, M., Locke, A.D., Rathbone, R.R.: A neural network for breakthrough prediction in packed bed adsorption. Biotechnol. Tech. 7(2), 155–158 (1993)

    Article  CAS  Google Scholar 

  • Yang, X., Tsai, G.J., Tsao, G.T.: Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep. Technol. 4, 81–92 (1994)

    Article  CAS  Google Scholar 

  • Zheng, Y.N., Li, L.Z., Xian, M., Ma, Y.J., Yang, J.M., Xu, X., He, D.Z.: Problems with the microbial production of butanol. J. Ind. Microbiol. Biotechnol. 36, 1127–1138 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Natural Science and Engineering Research Council (NSERC) of Canada and Ontario Graduate Scholarship (OGS) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Thibault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdehagh, N., Tezel, F.H. & Thibault, J. Multicomponent adsorption modeling: isotherms for ABE model solutions using activated carbon F-400. Adsorption 22, 357–370 (2016). https://doi.org/10.1007/s10450-016-9784-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9784-y

Keywords

Navigation