Skip to main content
Log in

Investigation of gas transport through porous membranes based on nonlinear frequency response analysis

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Theoretical development of a new experimental method for investigation of mass transport in porous membranes, based on the principle of the modified Wicke-Kallenbach diffusion cell and the nonlinear frequency response analysis is presented. The method is developed to analyze the transport of a binary gas mixture in a porous membrane. The mixture is assumed to consist of one adsorbable and one inert component. Complex mass transfer mechanism in the membrane, where bulk or transition diffusion in the pore volume and surface diffusion take place in parallel, is assumed. Starting from the basic mathematical model equations and following a rather standardized procedure, the frequency response functions (FRFs) up to the second order are derived. Based on the derived FRFs, correlations between some characteristic features of these functions on one side, and the whole set of equilibrium and transport parameters of the system, on the other, are established. As the FRFs can be estimated directly from different harmonics of the measured outputs, these correlations give a complete theoretical basis for the proposed experimental method. The method is illustrated by quantifying the transport of helium (inert gas) and C3H8 and CO2 (adsorbable gases) through a porous Vycor glass membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Input amplitude, general and of the dimensionless partial pressure of the adsorbable component in the feed stream

a i,j :

Dimensionless first derivative of the pore diffusivity

a s :

Dimensionless first derivative of the surface diffusivity

a Φ :

Dimensionless first derivative of the adsorption isotherm

B :

Output amplitude, general

b Φ :

Dimensionless second derivative of the adsorption isotherm

D p , m2/s:

Pore diffusivity

D s , m2/s:

Surface diffusivity

F n :

n-th order FRF corresponding to the dimensionless partial pressure of the adsorbable component in the closed chamber

G n :

n-th order FRF corresponding to the dimensionless partial pressure of the inert component in the closed chamber

H n :

n-th order FRF corresponding to the dimensionless total pressure in the closed chamber

J, mol/m2/s:

molar flux

K :

Auxiliary parameter (Table 1)

L, m:

Membrane thickness

P, Pa:

Pressure

p :

Dimensionless pressure

Q, mol/m3:

Concentration in the solid phase

q :

Dimensionless concentration in the solid phase

R, J/mol/K:

Gas constant

T, K:

Temperature

V, m3:

Volume

x :

Input, general

y :

Output, general

z, m:

Spatial coordinate

α :

Auxiliary parameter (Table 1)

β :

Auxiliary parameter (Table 1)

ε :

Porosity

Φ:

Adsorption isotherm relation

φ :

Auxiliary parameter (Table 1)

γ :

Auxiliary parameter (Table 1)

ϕ, rad:

Phase shift

τ :

Tortuosity factor

ω, rad/s:

Frequency

1:

Adsorbable component

2:

Inert component

I :

Open chamber, first harmonic

II :

Closed chamber, second harmonic

III :

Third harmonic

ads :

Adsorbed phase

atm :

Atmospheric

g :

Gas phase

i :

Component i

s :

Steady-state

tot :

Total

0:

Feed

∗:

Auxiliary FRF

FR:

Frequency response

FRF:

Frequency response function

References

  • Baker, R.W.: Membrane Technology and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Book  Google Scholar 

  • Janovski, F., Enke, D.: Porous glasses. In: Schüth, F., Sing, K.S.W., Weitkamo, J. (eds.) Handbook of Porous Solids, vol. 3. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  • Lee, G.M.: Estimation of nonlinear system parameters using higher order frequency response functions. Mech. Syst. Signal Process. 11, 219–228 (1997)

    Article  Google Scholar 

  • Marković, A.: Experimental and Theoretical analysis of the mass transport through porous glass membranes with different pore diameters. Ph.D. Thesis, Otto von Guericke University, Magdeburg (2009)

  • Marković, A., Stoltenberg, D., Enke, D., Schlünder, E.-U., Seidel-Morgenstern, A.: Gas permeation through porous glass membranes Part I. Mesoporous glasses—Effect of pore diameter and surface properties. J. Membr. Sci. 336, 17–31 (2009a)

    Article  Google Scholar 

  • Marković, A., Stoltenberg, D., Enke, D., Schlünder, E.-U., Seidel-Morgenstern, A.: Gas permeation through porous glass membranes Part II: Transition regime between Knudsen and configurational diffusion. J. Membr. Sci. 336, 32–41 (2009b)

    Article  Google Scholar 

  • Marković, A., Schlünder, E.-U., Seidel-Morgenstern, A.: Measurement of surface diffusivities in mesoporous Vycor glass membranes using a modified Wicke–Kallenbach cell with variable cell volume. Int. J. Heat Mass Transf. 53, 384–389 (2010)

    Article  Google Scholar 

  • Novak, M., Ehrhard, K., Klusacek, K., Schneider, P.: Dynamics of non-isobaric diffusion in porous catalysts. Chem. Eng. Sci. 43, 185–193 (1988)

    Article  CAS  Google Scholar 

  • Petkovska, M.: Nonlinear frequency response of isothermal adsorption controlled by pore-surface diffusion. Bull. Chem. Technol. Maced. 18, 149–160 (1999)

    CAS  Google Scholar 

  • Petkovska, M.: Nonlinear frequency response of nonisothermal adsorption controlled by micropore diffusion with variable diffusivity. J. Serb. Chem. Soc. 65, 939–961 (2000)

    CAS  Google Scholar 

  • Petkovska, M.: Nonlinear frequency response of nonisothermal adsorption systems. Nonlinear Dyn. 26, 351 (2001)

    Article  Google Scholar 

  • Petkovska, M.: Application of nonlinear frequency response to adsorption systems with complex kinetic mechanisms. Adsorption 11, 497–502 (2005)

    Article  Google Scholar 

  • Petkovska, M.: Nonlinear frequency response method for investigation of equilibria and kinetics in adsorption systems. In: Spasic, A.M., Hsu, J.P. (eds.) Finely Dispersed Particles: Micro, Nano- and Atto-Engineering. CRC Taylor & Francis, Boca Raton, pp. 283–327 (2006)

    Google Scholar 

  • Petkovska, M., Do, D.D.: Nonlinear frequency response of adsorption systems: Isothermal batch and continuous flow adsorber. Chem. Eng. Sci. 53, 3081 (1998)

    Article  CAS  Google Scholar 

  • Petkovska, M., Do, D.D.: Use of higher order FRFs for identification of nonlinear adsorption kinetics: single mechanisms under isothermal conditions. Nonlinear Dyn. 21, 353 (2000)

    Article  Google Scholar 

  • Petkovska, M., Petkovska, Lj.T.: Use of nonlinear frequency response for discriminating adsorption kinetics mechanisms resulting with bimodal characteristic functions. Adsorption 9, 133 (2003)

    Article  CAS  Google Scholar 

  • Petkovska, M., Petkovska, Lj.T.: Application of nonlinear frequency response to investigation of membrane transport. Sep. Sci. Technol. 41(1), 43–72 (2006)

    Article  CAS  Google Scholar 

  • Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2000)

    Google Scholar 

  • Řezníčková Čermaková, J., Marković, A., Uchytil, P., Seidel-Morgenstern, A.: Single component and competitive adsorption of propane, carbon dioxide and butane on Vycor glass. Chem. Eng. Sci. 63, 1586–1601 (2008)

    Article  Google Scholar 

  • Schlünder, E.-U., Yang, J., Seidel-Morgenstern, A.: Competitive diffusion and adsorption in Vycor glass membranes. Catal. Today 118, 113–120 (2006)

    Article  Google Scholar 

  • Tuchlenski, A., Uchytil, P., Seidel-Morgenstern, A.: An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci. 140, 165–184 (1998)

    Article  CAS  Google Scholar 

  • Weiner, D.D., Spina, J.F.: Sinusoidal Analysis and Modeling of Weakly Nonlinear Circuits. Van Nostrand Reinhold, New York (1980)

    Google Scholar 

  • Yang, J., Čermaková, J., Uchytil, P., Hamel, C., Seidel-Morgenstern, A.: Gas phase transport adsorption and surface diffusion in a porous glass membrane. Catal. Today 104, 344–351 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Petkovska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkovska, M., Markovic, A., Lazar, M. et al. Investigation of gas transport through porous membranes based on nonlinear frequency response analysis. Adsorption 17, 75–91 (2011). https://doi.org/10.1007/s10450-010-9293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-010-9293-3

Keywords

Navigation