Skip to main content

Advertisement

Log in

Modification of activated carbon porosity by pyrolysis under pressure of organic compounds

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Co-pyrolysis at relatively low temperature (673 K) and high pressure (10 MPa), using three organic compounds, was used to modify the porosity of the two ACs. The co-pyrolysis is effective for the modification of the porosity of an AC, and the efficiency depends on the organic compound used. The differences found are consequence of the chemical composition of the organic precursor. High pressure pyrolysis produces beneficial results when an organic compound that volatilizes during the preparation is used. Conducting pyrolysis at low temperature permits improved control of the porosity because the rate of gasification can be more tightly controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal, R.K., Schwarz, J.A.: Analysis of high pressure adsorption of gases on activated carbon by potential theory. Carbon 26, 873–887 (1988)

    Article  CAS  Google Scholar 

  • Armor, J.N.: Carbon molecular sieves for air separation. In: Extended Abstracts 20nd Biennial Conf. on Carbon, UC Santa Barbara, California, USA, p. 40. American Carbon Society (1991)

  • Ayache, J., Oberlin, A., Inagaki, M.: Mechanism of carbonization under pressure, part I: Influence of aromaticity (polyethylene and anthracene). Carbon 28, 337–335 (1990)

    Article  CAS  Google Scholar 

  • Bansal, R.C., Donnet, J.B., Stoeckli, F.: Active Carbon. Dekker, New York (1988)

    Google Scholar 

  • Cabrera, A.L., Zehner, J.E., Coe, C.G., Gaffney, T.R., Farris, T.S.: Preparation of carbon molecular sieves I: two-step carbon source deposition with a single carbon source. Carbon 31, 969–976 (1993)

    Article  CAS  Google Scholar 

  • Cazorla-Amorós, D., Alcañiz-Monge, J., Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12, 2820–2824 (1996)

    Article  Google Scholar 

  • Chihara, K., Suzuki, M.: Control of micropore diffusivities of molecular sieving carbon by deposition of hydrocarbons. Carbon 17, 339–343 (1979)

    Article  CAS  Google Scholar 

  • David, E., Talaie, A., Stanciu, V., Nicolae, A.C.: Synthesis of carbon molecular sieves by benzene pyrolysis over microporous carbon materials. J. Mater. Process. Technol. 157-158, 290–296 (2004)

    Article  CAS  Google Scholar 

  • de la Casa-Lillo, M., Alcañiz-Monge, J., Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A.: Molecular sieve properties of general-purpose carbon fibres. Carbon 36, 1353–1360 (1998)

    Article  Google Scholar 

  • Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon 27, 457–467 (1989)

    Article  CAS  Google Scholar 

  • Foley, H.C.: Carbogenic molecular sieves: synthesis, properties and applications. Microporous Mater. 4, 407–433 (1995)

    Article  CAS  Google Scholar 

  • Freitas, M.M.A., Figueiredo, J.L.: Preparation of carbon molecular sieves for gas separations by modification of the pore sizes of activated carbons. Fuel 80, 1–6 (2001)

    Article  CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity. Academic Press, London (1967)

    Google Scholar 

  • Hayashi, J., Matsuzaki, K., Hiraumi, T., Muroyama, K.: Production of molecular sieving carbon from phenol-formaldehyde resin by an ester-carbonization method. Carbon 34, 273–274 (1996)

    Article  CAS  Google Scholar 

  • Hu, Z., Vansant, E.F.: Carbon molecular sieves produced from walnut shell. Carbon 33, 561–567 (1995)

    Article  CAS  Google Scholar 

  • Hüttinger, K.J.: Coke yield in liquid-phase pyrolysis of hydrocarbons from the standpoint of chemical reaction engineering science. Carbon 26, 477–484 (1988)

    Article  Google Scholar 

  • Inagaki, M., Kuroda, K., Sakai, M.: Formation of carbon spherules from polyethylene under pressure. High Temp. High Press. 13, 207–213 (1981)

    CAS  Google Scholar 

  • Jüntgen, H., Knoblauch, K., Harder, K.: Carbon molecular sieves, production from coal and application in gas separation. Fuel 60, 817–822 (1981)

    Article  Google Scholar 

  • Kawabuchi, Y., Oka, H., Kawano, S., Mochida, I., Yoshizawa, N.: The modification of pore size in activated carbon fibers by chemical vapor deposition and its effects on molecular sieve selectivity. Carbon 36, 377–382 (1998)

    Article  CAS  Google Scholar 

  • Linares-Solano, A., López-González, J.D., Martín-Martínez, J.M., Rodríguez-Reinoso, F.: The n-nonane preadsorption method applied to activated carbons. Adsorpt. Sci. Technol. 1, 123–129 (1984)

    CAS  Google Scholar 

  • Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A.: Can highly activated carbons be prepared with a homogeneous micropore size distribution? Fuel Process. Technol. 77-78, 325–330 (2002)

    Article  Google Scholar 

  • Mackay, D.K., Roberts, P.V.: The influence of pyrolysis conditions on yield and microporosity of lignocellulosic chars. Carbon 20, 95–104 (1982)

    Article  Google Scholar 

  • Miura, K., Hayashi, J., Hashimoto, K.: Production of molecular sieving carbon through carbonization of coal modified by organic additives. Carbon 29, 653–660 (1991)

    Article  CAS  Google Scholar 

  • Mochida, Y., Yatsunami, S., Kawabuchi, Y., Nakayama, Y.: Influence of heat-treatment on the selective adsorption of CO2 in a model natural gas over molecular sieve carbons. Carbon 33, 1611–1614 (1995)

    Article  CAS  Google Scholar 

  • Moreira, R.F.P.M., José, H.J., Rodrigues, A.E.: Modification of pore size in activated carbon by polymer deposition and its effects on molecular sieve selectivity. Carbon 39, 2269–2276 (2001)

    Article  CAS  Google Scholar 

  • Nakao, N., Kitagawa, K., Sasaki, M., Iria, T.: High-pressure chemical vapor deposition for preparation of carbon. Carbon 33, 183–191 (1995)

    Article  CAS  Google Scholar 

  • Orfanoudaki, T., Skodras, G., Dolios, I., Sakellaropoulos, G.P.: Production of carbon molecular sieves by plasma treated activated carbon fibers. Fuel 82, 2045–2049 (2003)

    Article  CAS  Google Scholar 

  • Pan, Z.J., Yang, R.T., Ritter, J.A.: In: Keller II, G.E., Yang, R.T. (eds.) New Directions in Sorption Technology, p. 61. Butterworths (1989)

  • Patrick, J.W., Arnold, E. (eds.): Porosity in Carbons: Characterization and Applications (1995)

  • Prasetyo, I., Do, D.D.: Pore structure alteration of porous carbon by catalytic coke deposition. Carbon 37, 1909–1918 (1999)

    Article  CAS  Google Scholar 

  • Py, X., Guillot, A., Cagnon, B.: Activated carbon porosity tailoring by cyclic sorption/decomposition of molecular oxygen. Carbon 41, 1533–1543 (2003)

    Article  CAS  Google Scholar 

  • Rodriguez-Reinoso, F., Linares-Solano, A.: In: Thower, P.A. (ed.) Chemistry and Physics of Carbon, vol. 21, pp. 1–123. Dekker, New York (1988)

    Google Scholar 

  • Román-Martínez, M.C., Cazorla-Amorós, D., Linares-Solano, A., Salinas-Martínez de Lecea, C., Atamny, F.: Structural study of a phenolformaldehyde char. Carbon 34, 719–727 (1996)

    Article  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierott, R.A., Rouquerol, J., et al.: Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  • Toda, Y., Yuri, N., Toyoda, S.: Change in pore structure of active carbon with heat-treatment. Carbon 10, 13–18 (1972)

    Article  CAS  Google Scholar 

  • Verma, S.K.: Development of molecular sieving properties in microporous carbons. Carbon 29, 793–803 (1991)

    Article  CAS  Google Scholar 

  • Verma, S.K., Walker, P.L. Jr.: Alteration of molecular sieving properties of microporous carbons by heat treatment and carbon gasification. Carbon 28, 175–184 (1990)

    Article  CAS  Google Scholar 

  • Verma, S.K., Walker, P.L. Jr.: Preparation of carbon molecular sieves by propylene pyrolysis over microporous carbons. Carbon 30, 829–836 (1992)

    Article  CAS  Google Scholar 

  • Vyas, S.N., Patwardhan, S.R., Gangadhar, B.: Synthesis of carbon molecular sieves by activation and coke deposition. Fuel 72, 551–555 (1993)

    Article  CAS  Google Scholar 

  • Walker, P.L. Jr., Lamond, T.G., Metcalfe, J.E.: Preparation of 4A and 5A carbon molecular sieves. In: Proc. 2nd Conf. Ind. Carbon and Graphite, London, pp. 7–12 (1966)

  • Washiyama, M., Sakai, M., Inagaki, M.: Formation of carbon spherules by pressure carbonization: Relation to molecular structure of precursor. Carbon 26, 303–307 (1988)

    Article  CAS  Google Scholar 

  • Yang, R.T.: In: Gas Separation by Adsorption Processes. Imperial College Press, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Alcañiz-Monge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcañiz-Monge, J., Illán-Gómez, M.J. Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption 14, 93–100 (2008). https://doi.org/10.1007/s10450-007-9056-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9056-y

Keywords

Navigation