Skip to main content
Log in

Bézier form of dual bivariate Bernstein polynomials

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Dual Bernstein polynomials of one or two variables have proved to be very useful in obtaining Bézier form of the L 2-solution of the problem of best polynomial approximation of Bézier curve or surface. In this connection, the Bézier coefficients of dual Bernstein polynomials are to be evaluated at a reasonable cost. In this paper, a set of recurrence relations satisfied by the Bézier coefficients of dual bivariate Bernstein polynomials is derived and an efficient algorithm for evaluation of these coefficients is proposed. Applications of this result to some approximation problems of Computer Aided Geometric Design (CAGD) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, Y. J.: Using Jacobi polynomials for degree reduction of Bézier curves with C k-constraints. Comput. Aided Geom. Des. 20, 423–434 (2003)

    Article  MATH  Google Scholar 

  2. Ahn, Y. J., Lee, B.-G., Park, Y., Yoo, J.: Constrained polynomial degree reduction in the L 2-norm equals best weighted Euclidean approximation of Bézier coefficients. Comput. Aided Geom. Des. 21, 181–191 (2004)

    Article  MATH  Google Scholar 

  3. Andrews, G. E., Askey, R., Roy, R.: Special functions encyclopedia of mathematics and its applications, vol. 71. Cambridge University Press, Cambridge (1999)

  4. Chen, G., Wang, G.: Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity. Comput. Aided Geom. Des. 19, 365–377 (2002)

    Article  Google Scholar 

  5. Dahlquist, G., Björck, A.: Numerical methods in scientific computing, vol. I. Society for Industrial and Applied Mathematics, Philadelphia, PA (2008)

  6. Dunkl, C. F., Xu, Y.: Orthogonal polynomials of several variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  7. Eck, M.: Least squares degree reduction of Bézier curves. Comput.-Aided Des. 27, 845–851 (1995)

    Article  Google Scholar 

  8. Farin, G.: Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des. 3, 83–127 (1986)

    Article  Google Scholar 

  9. Farin, G.: Curves and surfaces for computer-aided geometric design. A practical guide, 5th edn. Academic Press, Boston (2002)

    MATH  Google Scholar 

  10. Hu, Q. Q.: An iterative algorithm for polynomial approximation of rational triangular Bézier surfaces. Appl. Math. Comput. 219, 9308–9316 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Keller, P.: A method for indefinite integration of oscillatory and singular functions. Numer. Algor. 46, 219–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koekoek, R., Swarttouw, R. F.: The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue. Rep. 98-17, Faculties Technologies Mathematics Informatics, Delft University of Technology, Delft (1998)

  13. Koornwinder, T. H.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R. A. (ed.) Theory and Application of Special Functions, pp 435–495. Academic Press, New York (1975)

  14. Lee, B.-G., Park, Y., Yoo, J.: Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction. Comput. Aided Geom. Des. 19, 709–718 (2002)

    Article  MathSciNet  Google Scholar 

  15. Lewanowicz, S., Keller, P., Woźny, P.: Constrained approximation of rational triangular Bézier surfaces by polynomial triangular Bézier surfaces. Numer. Algor. (2016). doi:10.1007/s11075-016-0198-4

  16. Lewanowicz, S., Woźny, P.: Connections between two-variable Bernstein and Jacobi polynomials on the triangle. J. Comput. Appl. Math. 197, 520–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lewanowicz, S., Woźny, P.: Bézier representation of the constrained dual Bernstein polynomials. Appl. Math. Comput. 218, 4580–4586 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Lewanowicz, S., Woźny, P., Keller, P.: Polynomial approximation of rational Bézier curves with constraints. Numer. Algor. 59, 607–622 (2012)

    Article  MATH  Google Scholar 

  19. Lu, L., Wang, G.: Optimal degree reduction of Bézier curves with G 2-continuity. Comput. Aided Geom. Des. 23, 673–683 (2006)

    Article  MATH  Google Scholar 

  20. Lu, L., Wang, G.: Application of Chebyshev II–Bernstein basis transformations to degree reduction of Bézier curves. J. Comput. Appl. Math. 221, 52–65 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rababah, A.: Distances with rational triangular Bézier surfaces. Appl. Math. Comp. 160, 379–386 (2005)

    Article  MATH  Google Scholar 

  22. Rababah, A., Lee, B.-G., Yoo, J.: A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations. Appl. Math. Comput. 181, 310–318 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Rababah, A., Al-Natour, M.: The weighted dual functionals for the univariate Bernstein basis. Appl. Math. Comput. 186, 1581–1590 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Sharma, R.: Conversion of a rational polynomial in triangular Bernstein-Bézier form to polynomial in triangular Bernstein-Bézier form. Internat. J. Comput. Appl. Math. 8, 45–52 (2013)

    Google Scholar 

  25. Sunwoo, H.: Matrix representation for multi-degree reduction of Bézier curves. Comput. Aided Geom. Des. 22, 261–273 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sunwoo, H., Lee, N.: A unified matrix representation for degree reduction of Bézier curves. Comput. Aided Geom. Des. 21, 151–164 (2004)

    Article  MATH  Google Scholar 

  27. Tratnik, M. V.: Some multivariate orthogonal polynomials of the Askey tableau – discrete families. J. Math. Phys. 32, 2337–2342 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Woźny, P., Lewanowicz, S.: Multi-degree reduction of Bézier curves with constraints, using dual Bernstein basis polynomials. Comput. Aided Geom. Des. 26 (2009), 566–579 (2009)

    MATH  Google Scholar 

  29. Woźny, P., Lewanowicz, S.: Constrained multi-degree reduction of triangular Bézier surfaces using dual Bernstein polynomials. J. Comput. Appl. Math. 235, 785–804 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Lewanowicz.

Additional information

Communicated by: Tom Lyche

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewanowicz, S., Keller, P. & Woźny, P. Bézier form of dual bivariate Bernstein polynomials. Adv Comput Math 43, 777–793 (2017). https://doi.org/10.1007/s10444-016-9506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9506-8

Keywords

Mathematics Subject Classification (2010)

Navigation