Skip to main content
Log in

Extrapolation and superconvergence of the Steklov eigenvalue problem

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

On the basis of a transform lemma, an asymptotic expansion of the bilinear finite element is derived over graded meshes for the Steklov eigenvalue problem, such that the Richardson extrapolation can be applied to increase the accuracy of the approximation, from which the approximation of O(h 3.5) is obtained. In addition, by means of the Rayleigh quotient acceleration technique and an interpolation postprocessing method, the superconvergence of the bilinear finite element is presented over graded meshes for the Steklov eigenvalue problem, and the approximation of O(h 3) is gained. Finally, numerical experiments are provided to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armentano, M.G.: The effect of reduced integration in the Steklov eigenvalue problem. Math. Model. Numer. Anal. (M2AN) 38, 27–36 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Finite Element Methods (Part 1), vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  3. Bergmann, S., Schiffer, M.: Kernel Function and Elliptic Differential Equations in Mathematical Physics. Academic, New York (1953)

    Google Scholar 

  4. Bermúdez, A., Rodríguez, R., Santamarina, D.: A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87, 201–227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, H., Lin, Q., Rannacher, R.: Asymptotic error expansion and Richardson extrapolation for linear finite elements. Numer. Math. 49, 11–38 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandts, J.: Superconvergence phenomena in finite element methods. Ph.D. Thesis, Utrecht Univ. (1995)

  7. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    MATH  Google Scholar 

  8. Brunner, H., Lin, Y., Zhang, S.: Higher accuracy methods for second-kind Volterra integral equations based on asymptotic expansions of iterated Galerkin methods. J. Integral Equations Appl. 10, 375–396 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Huang, Y.: High Accuracy Theory for Finite Element Methods. Hunan Scientific and Technology, Hunan (1995)

    Google Scholar 

  10. Chen, W.: The analysis of mixed finite element methods for eigenvalue problems. Postdoc. Thesis, Chinese Academy of Sciences (2003)

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Conca, C., Planchard, J., Vanninathan, M.: Fluid and Periodic Structures. Wiley, New York (1995)

    Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  14. Helfrich, P.: Asymptotic expansion for the finite element approximations of parabolic problems. Bonner Math. Schriften 158, 11–30 (1983)

    MathSciNet  Google Scholar 

  15. Křížek, M., Neittaanmäki, P.: Bibliography on superconvergence. In: Proc. Conf. Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates. Lecture Notes in Pure and Appl. Math., vol. 196, pp. 315–348. Marcel Dekker, New York (1998)

    Google Scholar 

  16. Liem, C., Lu, T., Shih, T.: Splitting Extrapoltion Method. World Scientific, River Edge (1995)

    Google Scholar 

  17. Lin, Q.: Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners. Numer. Math. 58, 631–640 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science, Beijing (2006)

    Google Scholar 

  19. Lin, Q., Sloan, I.H., Xie, R.: Extrapolation of the iterated-collocation method for integral equations of the second kind. SIAM J. Numer. Anal. 27, 1535–1541 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers, Hebei (1996)

    Google Scholar 

  21. Lin, Q., Zhang, S., Yan, N.: Asymptotic error expansion and defect correction for Sobolev and viscoelasticity type equations. J. Comput. Math. 16, 57–62 (1998)

    MathSciNet  Google Scholar 

  22. Lin, Q., Zhang, S., Yan, N.: High accuracy analysis for integrodifferential equations. Acta Math. Appl. Sinica 14, 202–211 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Q., Zhang, S., Yan, N.: An acceleration method for integral equations by using interpolation post-processing. Adv. Comput. Math. 9, 117–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, T., Lin, Y., Rao, M., Zhang, S.: Petrov-Galerkin methods for linear Volterra integro-differential equations. SIAM J. Numer. Anal. 38(3), 937–963 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marchuk, G., Shaidurov, V.: Difference Methods and their Extrapolation. Springer, New York (1983)

    Google Scholar 

  26. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall, New York (1972)

    Google Scholar 

  27. Wang, J.: Superconvergence and extrapolation for mixed finite element method on rectangular domains. Math. Comput. 56, 447–503 (1991)

    Google Scholar 

  28. Weinberger, H.: Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974)

    MATH  Google Scholar 

  29. Xu, Y., Zhao, Y.: An extrapolation method for a class of boundary integral equations. Math. Comput. 65, 587–610 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan, N., Li, K.: An extrapolation method for BEM. J. Comput. Math. 2, 217–224 (1989)

    MathSciNet  Google Scholar 

  31. Yang, Y.: An Analysis of the Finite Element Method for Eigenvalue Problems. Guizhou People’s Publishing House, Guizhou (1994)

    Google Scholar 

  32. Zhou, A.: Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem. Math. Model. Numer. Anal. (M2AN) 33, 89–97 (1999)

    Article  MATH  Google Scholar 

  33. Zhu, Q., Lin, Q.: Superconvergence Theory of Finite Element Methods. Hunan Science, Hunan (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxia Li.

Additional information

Communicated by Yuesheng Xu.

This project was supported in part by the National Basic Research Program of China (2007CB814906), the National Natural Science Foundation of China (10471103 and 10771158), Social Science Foundation of the Ministry of Education of China (06JA630047), Tianjin Natural Science Foundation (07JCYBJC14300), and Tianjin University of Finance and Economics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Lin, Q. & Zhang, S. Extrapolation and superconvergence of the Steklov eigenvalue problem. Adv Comput Math 33, 25–44 (2010). https://doi.org/10.1007/s10444-009-9118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9118-7

Keywords

Mathematics Subject Classifications (2000)

Navigation