Skip to main content
Log in

Preparation, Adsorption Properties and Microwave-Assisted Regeneration of Porous C/SiC Ceramics with a Hierarchical Structure

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Porous C/SiC ceramics were prepared by chemical vapor reaction of SiO and porous C/C composites. The porous C/SiC ceramics presented a hierarchical structured consisted of carbon fibers, SiC layer, microspheres and nanowires. The density of porous C/C composites control the growth of SiC nanowires and nanolayer, and influence the pore size distribution and specific surface area of the porous C/SiC ceramics. The C/SiC samples converting from the C/C composites with a density of 0.46 g/cm3 possess the superior adsorption properties. The adsorption efficiency can reach 98.2% within 80 min, indicating that C/SiC samples have a promising adsorption property for MB from aqueous solution. Furthermore, the adsorption efficiency after five cycles microwave regeneration still reached 80.2%, which present excellent regeneration stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yu, Z.J., Li, S., Zhang, P., et al.: Polymer-derived mesoporous Ni/SiOC(H) ceramic nanocomposites for efficient removal of acid fuchsin. Ceram. Int. 43, 4520–4526 (2017)

    CAS  Google Scholar 

  2. Chen, L., Bai, B., et al.: Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methyleneblue adsorption by the raspberry-like TiO2@yeast microspheres. Ind. Eng. Chem. Res. 52, 15568–15577 (2013)

    CAS  Google Scholar 

  3. Pirbazari, A.E., Saberikhah, E., Badrouh, M., et al.: Alkali treated foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resource Ind. 6, 64–80 (2014)

    Google Scholar 

  4. Ghaedi, M., GolestaniNasab, A., Khodadoust, S., et al.: Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. J. Ind. Eng. Chem. 20, 2317–2324 (2014)

    CAS  Google Scholar 

  5. Kang DJ, Yu XL, Ge MF, et al. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chem Eng J. 345, 252–259(2018)

  6. Polaert, I., Estel, L., Huyghe, R., et al.: Adsorbents regeneration under microwave irradiation for dehydration and volatile organic compounds gas treatment. Chem. Eng. J. 162, 941–948 (2010)

    CAS  Google Scholar 

  7. Hazrati, H., Jahanbakhshi, N., Mohammad, R., et al.: Fouling reduction in the membrane bioreactor using synthesized zeolite nano-adsorbents. J Membrane Sci. 555, 455–462 (2018)

    CAS  Google Scholar 

  8. Srinivasan, A., Viraraghavan, T., et al.: Oil removal from water by fungal biomass: a factorial design analysis. J. Hazard. Mater. 175, 695–702 (2010)

    CAS  Google Scholar 

  9. Zeng, Y., Wang, K., Yao, J., et al.: Hollow carbon beads fabricated by phase inversion method for efficient oil sorption. Carbon. 69, 25–31 (2014)

    CAS  Google Scholar 

  10. Ahmad, A.L., Sumathi, S., Hameed, B.H., et al.: Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: a comparative study. Chem. Eng. J. 108, 179–185 (2005)

    CAS  Google Scholar 

  11. Saleh, T.A., et al.: Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism. Desalin. Water Treat. 57, 1–15 (2015)

    Google Scholar 

  12. Zhao, M.Q., Huang, J.Q., Zhang, Q., et al.: Improvement of oil adsorption per-formance by a sponge-like natural vermiculite-carbon nanotube hybrid. Appl. Clay Sci. 53, 1–7 (2011)

    CAS  Google Scholar 

  13. Abdelbassit, M.S.A., Alhooshani, K.R., Saleh, T.A., et al.: Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride. Adv Powder Technol. 27, 1719–1729 (2016)

    CAS  Google Scholar 

  14. Berger, M., Noualib, H., Dorge, S., et al.: Long-term activity of a CuO/SBA-15 type SOx adsorbent: impact of the regeneration step. Chem. Eng. J. 347, 202–213 (2018)

    CAS  Google Scholar 

  15. Qu, Z., Fang, L., Chen, D.Y., Xu, H.M., et al.: Effective and regenerable Ag/graphene adsorbent for hg(II) removal from aqueous solution. Fuel. 203, 128–134 (2017)

    CAS  Google Scholar 

  16. Francisco, S., Nicolas, M.S., Ruth, S.H., et al.: Carmen Izquierdo regeneration of carbonaceous adsorbents. Part I: Thermal Regeneration. Micropor Mesopor Mat. 202, 259–276 (2015)

    Google Scholar 

  17. Cherbański, R., et al.: Regeneration of granular activated carbon loaded with toluene-comparison of microwave and conductive heating at the same active powers. Chem. Eng. Process. 123, 148–157 (2018)

    Google Scholar 

  18. Foo, K.Y., et al.: Effect of microwave regeneration on the textural network, surface chemistry and adsorptive property of the agricultural waste based activated carbons. Process Saf Environ. 116, 461–467 (2018)

    CAS  Google Scholar 

  19. Sun, Y.L., Zhang, B., Zheng, T., Wang, P., et al.: Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation. Chem. Eng. J. 320, 264–270 (2017)

    CAS  Google Scholar 

  20. Foo, K.Y., Hameed, B.H., et al.: Microwave-assisted regeneration of activated carbon. Bioresour. Technol. 119, 234–240 (2012)

    CAS  Google Scholar 

  21. Guo, X., Cai, X., Zhu, L., et al.: Preparation and properties of SiC honeycomb ceramics by pressureless sintering technology. J Adv Ceram. 3, 83–88 (2014)

    CAS  Google Scholar 

  22. Chu, P., Liu, H.L., Li, Y.J., et al.: Synthesis of SiC–TiO2 hybrid aerogel via super critical drying combined PDCs route. Ceram. Int. 42, 17053–17058 (2016)

    CAS  Google Scholar 

  23. Shcherban, N.D., Filonenko, S.M., Yaremov, P.S., et al.: Carbothermal synthesis of porous silicon carbide using mesoporous silicas. J. Mater. Sci. 52, 3917–3926 (2017)

    CAS  Google Scholar 

  24. Lei, H., Cheng, Q., et al.: A carbon nanotube/carbonaceous foam composite: simple preparation and potential application. J. Mater. Sci. 53, 12860–12870 (2018)

    CAS  Google Scholar 

  25. Vakifahmetoglu, C., Pippel, E., Woltersdor, J., et al.: Growth of one-dimensional nanostructures in porous polymer-derived ceramics by catalyst-assisted pyrolysis. Part I: iron catalyst. J Am Ceram Soc. 93, 959–968 (2010)

    CAS  Google Scholar 

  26. Wang, B., Wang, Y.D., Lei, Y.P., et al.: Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A. 2, 20873–20881 (2016)

    Google Scholar 

  27. Jaqueline, L.P., Cristine, S.O., César, R.T.T., et al.: Influence of pore former and transition metal on development of nanophases in porous silicon oxycarbide (SiCO) ceramics obtained by catalyst-assisted pyrolysis. J. Eur. Ceram. Soc. 36, 1365–1376 (2016)

    Google Scholar 

  28. Pan, J.M., Yan, X.H., Cheng, X.N., et al.: Preparation of SiC nanowires-filled cellular SiCO ceramics from polymeric precursor. Ceram. Int. 38, 6823–6829 (2012)

    CAS  Google Scholar 

  29. Pan, J.M., Yan, X.H., Cheng, X.N., et al.: In situ synthesis an delectrical properties of porous SiOC ceramics decorated with SiC nanowires. Ceram. Int. 42, 12345–12351 (2016)

    CAS  Google Scholar 

  30. Ding, J., Zhu, H.X., Li, G.Q., et al.: Growth of SiC nanowires on wooden template surface using molten salt media. Appl. Surf. Sci. 320, 620–626 (2014)

    CAS  Google Scholar 

  31. Chen, J.J., Jiang, M., Lin, W.X., et al.: Scalable fabrication of novel SiC nanowire nonwoven fabric. J. Mater. Sci. 53, 3289–3295 (2018)

    CAS  Google Scholar 

  32. Ouyang, H.B., Li, C.Y., Huang, J.F., et al.: Synthesis of carbon/carbon composites by hydrothermal carbonization using starch as carbon source. RSC Adv. 4, 12586–12589 (2014)

    CAS  Google Scholar 

  33. Qin, X.F., Wang, F., Ren, S.H., et al.: Self-forming salt-assisted synthesis of SiC nanoparticles and their adsorption property form ethyleneblue from aqueous solution. Ceram. Int. 42, 847–852 (2016)

    CAS  Google Scholar 

  34. Liu, Y.S., Men, J., Feng, W., et al.: Catalyst-free growth of SiCnanowires in a porous graphite substrate by low pressure chemical vaporinfiltration. Ceram. Int. 40, 11889–11897 (2014)

    CAS  Google Scholar 

  35. Yuan, W.W., Yuan, P., Liu, D., et al.: Novel hierarchically porous nanocomposites of diatomite-based ceramic monoliths coated with silicalite-1 nanoparticles for benzene adsorption. Micropor Mesopor Mat. 206, 184–193 (2015)

    CAS  Google Scholar 

  36. Myungbeom, S., Dae, S.K., Hyeong-Il, P., et al.: Porous silicon–carbon composite materials engineered by simultaneous alkaline etching for high-capacity lithium storage anodes. Electrochim Acta. 196, 197–205 (2016)

    Google Scholar 

  37. Yan, N.N., Shi, X.H., Li, K., et al.: Adsorption properties and preparation of porous TaC ceramics with regular steps. J Alloy Compd. 731, 971–977 (2018)

    CAS  Google Scholar 

  38. Feng, Y., Lai, S.Y., Yang, L., et al.: Polymer-derived porous Bi2WO6/SiC(O) ceramic nanocomposites with high photodegradation efficiency towards Rhodamine B. Ceram. Int. 44(7), 8562–8569 (2018)

    CAS  Google Scholar 

  39. Arshadi, M., Salimi Vahid, F., Salvacion, J.W.L., et al.: A practical organometallic decorated nano-size SiO2–Al2O3 mixed-oxides for methyl orange removal from aqueous solution. Appl. Surf. Sci. 280, 726–736 (2013)

    CAS  Google Scholar 

  40. Zheng, Y.Q., Liu, J.Y., Cheng, B., et al.: Hierarchical porous Al2O3@ZnO core-shell microfibres with excellent adsorption affinity for Congo red molecule. Appl. Surf. Sci. 473, 251–260 (2019)

    CAS  Google Scholar 

  41. Marwa, M.: Ibrahim, Cr2O3/Al2O3 as adsorbent: physicochemical properties and adsorption behaviors towards removal of Congo red dye from water. J Environ Chem Eng. 7(1), 102848 (2019)

    Google Scholar 

  42. Huang, J.K., Liu, H.E., Chen, S., et al.: Hierarchical porous MWCNTs-silica aerogel synthesis for high-efficiency oily water treatment. Chem. Eng. J. 4, 3274–3282 (2016)

    CAS  Google Scholar 

  43. Li, J., Li, J., Meng, H., et al.: Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem. A. 2, 2934–2941 (2014)

    CAS  Google Scholar 

  44. Sun, H.Y., Xu, Z., Gao, C., et al.: Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater. 25, 2554–2560 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Science and Technique Talent Project of Shaanxi Province under Grant No. 2016KJXX-07, Key Research and Development Plan of Shaanxi Province under Grant No. 2019GY-160, Xi’an Key Laboratory of green manufacture of ceramic materials Grant No. 2019220214SYS017CG039, Research Foundation of Wenzhou under Grant No. G20180002 and Research Foundation of Xianyang under Grant No. 2018 k02-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Cuiyan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuiyan, L., Zhao, X., Haibo, O. et al. Preparation, Adsorption Properties and Microwave-Assisted Regeneration of Porous C/SiC Ceramics with a Hierarchical Structure. Appl Compos Mater 27, 131–148 (2020). https://doi.org/10.1007/s10443-020-09801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-020-09801-x

Keywords

Navigation