Skip to main content
Log in

A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, P.F., Zheng, J.Y.: Recent developments on damage modeling and finite element analysis for composite laminates: a review. Mater. Des. 31(8), 3825–3834 (2010)

    Article  Google Scholar 

  2. Mishnaevsky, L., Brøndsted, P.: Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: a review. Comput. Mater. Sci. 44(4), 1351–1359 (2009)

    Article  Google Scholar 

  3. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)

    Article  Google Scholar 

  4. Asp, L.E., Berglund, L.A., Talreja, R.: Prediction of matrix-initiated transverse failure in polymer composites. Compos. Sci. Technol. 56(9), 1089–1097 (1996)

    Article  Google Scholar 

  5. Xu, Q., Lu, Z.: An elastic–plastic cohesive zone model for metal-ceramic interfaces at finite deformations. Int. J. Plast. 41, 147–164 (2013)

    Article  Google Scholar 

  6. París, F., Correa, E., Mantič, V.: Kinking of transversal interface cracks between fiber and matrix. J. Appl. Mech. 74(4), 703–716 (2007)

    Article  Google Scholar 

  7. Trias, D., Costa, J., Mayugo, J.A., Hurtado, J.E.: Random models versus periodic models for fibre reinforced composites. Comput. Mater. Sci. 38(2), 316–324 (2006)

    Article  Google Scholar 

  8. González, C., LLorca, J.: Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling. Compos. Sci. Technol. 67(13), 2795–2806 (2007)

    Article  Google Scholar 

  9. Totry, E., González, C., LLorca, J.: Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics. Compos. Sci. Technol. 68(15), 3128–3136 (2008)

    Article  Google Scholar 

  10. Totry, E., González, C., LLorca, J.: Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear. Compos. Sci. Technol. 68(3), 829–839 (2008)

    Article  Google Scholar 

  11. Vaughan, T.J., McCarthy, C.T.: Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites. Compos. Sci. Technol. 71(3), 388–396 (2011)

    Article  Google Scholar 

  12. Vaughan, T.J., McCarthy, C.T.: A micromechanical study on the effect of intra-ply properties on transverse shear fracture in fibre reinforced composites. Compos. A: Appl. Sci. Manuf. 42(9), 1217–1228 (2011)

    Article  Google Scholar 

  13. O’Dwyer, D.J., O’Dowd, N.P., McCarthy, C.T.: Numerical micromechanical investigation of interfacial strength parameters in a carbon fibre composite material. J. Compos. Mater. 48(6), 749–760 (2014)

    Article  Google Scholar 

  14. Romanowicz, M.: Progressive failure analysis of unidirectional fiber-reinforced polymers with inhomogeneous interphase and randomly distributed fibers under transverse tensile loading. Compos. A: Appl. Sci. Manuf. 41(12), 1829–1838 (2010)

    Article  Google Scholar 

  15. Romanowicz, M.: Determination of the first ply failure load for a cross ply laminate subjected to uniaxial tension through computational micromechanics. Int. J. Solids Struct. 51(13), 2549–2556 (2014)

    Article  Google Scholar 

  16. Yang, L., Yan, Y., Liu, Y.J., Ran, Z.G.: Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Compos. Sci. Technol. 72(15), 1818–1825 (2012)

    Article  Google Scholar 

  17. Melro, A.R., Camanho, P.P., Pires, F.M.A., Pinho, S.T.: Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part II-Micromechanical analyses. Int. J. Solids Struct. 50(11), 1906–1915 (2013)

    Article  Google Scholar 

  18. Arteiro, A., Catalanotti, G., Melro, A.R., Linde, P., Camanho, P.P.: Micro-mechanical analysis of the in situ effect in polymer composite laminates. Compos. Struct. 116, 827–840 (2014)

    Article  Google Scholar 

  19. Melro, A.R., Camanho, P.P., Pires, F.M.A., Pinho, S.T.: Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I-Constitutive modelling. Int. J. Solids Struct. 50(11), 1897–1905 (2013)

    Article  Google Scholar 

  20. Canal, L.P., González, C., Segurado, J., LLorca, J.: Intraply fracture of fiber-reinforced composites: microscopic mechanisms and modeling. Compos. Sci. Technol. 72(11), 1223–1232 (2012)

    Article  Google Scholar 

  21. Cid Alfaro, M.V., Suiker, A.S.J., De Borst, R.: Transverse failure behavior of fibre-epoxy systems. J. Compos. Mater. 44(12), 1493–1516 (2010)

    Article  Google Scholar 

  22. Moës, N., Dolbow, N., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

  23. Wells, G.N., Sluys, L.J.: A new method for modelling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. 50(12), 2667–2682 (2001)

    Article  Google Scholar 

  24. Belytschko, T., Gracie, R., Ventura, G.: A review of extended/generalized finite element methods for material modeling. Model. Simul. Mater. Sci. Eng. 17(4), 043001 (2009)

    Article  Google Scholar 

  25. Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Fréres, P.: Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model. Compos. Part B 55, 352–361 (2013)

    Article  Google Scholar 

  26. Bieniaś, J., Dębski, H., Surowska, B., Sadowski, T.: Analysis of microstructure damage in carbon/epoxy composites using FEM. Comput. Mater. Sci. 64, 168–172 (2012)

    Article  Google Scholar 

  27. Mollenhauer, D.H., Breitzman, T., Iarve, E.V., Hoos, K., Swindeman, M., Zhou, E.: Simulation of Mode I fracture at the micro-level in polymer matrix composite laminate plies. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials Conference, Honolulu, HI, AIAA 2012–1651 (2012)

  28. Soden, P.D., Hinton, M.J., Kaddour, A.S.: Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Compos. Sci. Technol. 58(7), 1011–1022 (1998)

    Article  Google Scholar 

  29. Yang, L., Yan, Y., Ran, Z.G., Liu, Y.J.: A new method for generating random fibre distributions for fibre reinforced composites. Compos. Sci. Technol. 76, 14–20 (2013)

    Article  Google Scholar 

  30. van der Sluis, O., Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H.: Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech. Mater. 32(8), 449–462 (2000)

    Article  Google Scholar 

  31. Remmers, J.J., De Borst, R.E., Needleman, A.: The simulation of dynamic crack propagation using the cohesive segments method. J. Mech. Phys. Solids 56(1), 70–92 (2008)

    Article  Google Scholar 

  32. Abaqus User’s manual

  33. Fang, X.J., Yang, Q.D., Cox, B.N., Zhou, Z.Q.: An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int. J. Numer. Methods Eng. 88(9), 841–861 (2011)

    Article  Google Scholar 

  34. Tay, T.E., Sun, X.S., Tan, V.B.C.: Recent efforts toward modeling interactions of matrix cracks and delaminations: an integrated XFEM-CE approach. Adv. Compos. Mater. 23(5–6), 391–408 (2014)

    Article  Google Scholar 

  35. Zhao, L.B., Gong, Y., Qin, T.L., Mehmood, S., Zhang, J.Y.: Failure prediction of out-of-plane woven composite joints using cohesive element. Compos. Struct. 106, 407–416 (2013)

    Article  Google Scholar 

  36. Zhao, L.B., Gong, Y., Zhang, J.Y., Chen, Y.L., Fei, B.J.: Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements. Compos. Struct. 116, 509–522 (2014)

    Article  Google Scholar 

  37. Varna, J., Berglund, L.A., Ericson, M.L.: Transverse single-fibre test for interfacial debonding in composites: 2. Modelling. Compos. A: Appl. Sci. Manuf. 28(4), 317–326 (1997)

    Article  Google Scholar 

  38. Hobbiebrunken, T., Hojo, M., Adachi, T., De Jong, C., Fiedler, B.: Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Compos. A: Appl. Sci. Manuf. 37(12), 2248–2256 (2006)

    Article  Google Scholar 

  39. Zhou, X.F., Wagner, H.D., Nutt, S.R.: Interfacial properties of polymer composites measured by push-out and fragmentation tests. Compos. A: Appl. Sci. Manuf. 32(11), 1543–1551 (2001)

    Article  Google Scholar 

  40. Soni, G., Singh, R., Mitra, M., Falzon, B.G.: Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M2RVE). Int. J. Solids Struct. 51(2), 449–461 (2014)

    Article  Google Scholar 

  41. Romanowicz, M.: Effect of interfacial debonding on the failure behavior in a fiber-reinforced composite subjected to transverse tension. Comput. Mater. Sci. 47(1), 225–231 (2009)

    Article  Google Scholar 

  42. O’Dwyer, D.J., O’Dowd, N.P., McCarthy, C.T.: Micromechanical investigation of damage processes at composite-adhesive interfaces. Compos. Sci. Technol. 86, 61–69 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The research work is supported by the National Science Foundation of China (11372020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhi, J., Zhao, L., Zhang, J. et al. A Numerical Method for Simulating the Microscopic Damage Evolution in Composites Under Uniaxial Transverse Tension. Appl Compos Mater 23, 255–269 (2016). https://doi.org/10.1007/s10443-015-9459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-015-9459-y

Keywords

Navigation