Skip to main content
Log in

Post Buckling Progressive Failure Analysis of Composite Laminated Stiffened Panels

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The present work deals with the numerical prediction of the post buckling progressive and final failure response of stiffened composite panels based on structural nonlinear finite element methods. For this purpose, a progressive failure model (PFM) is developed and applied to predict the behaviour of an experimentally tested blade-stiffened panel found in the literature. Failure initiation and propagation is calculated, owing to the accumulation of the intralaminar failure modes induced in fibre reinforced composite materials. Hashin failure criteria have been employed in order to address the fiber and matrix failure modes in compression and tension. On the other hand, the Tsai-Wu failure criterion has been utilized for addressing shear failure. Failure detection is followed with the introduction of corresponding material degradation rules depending on the individual failure mechanisms. Failure initiation and failure propagation as well as the post buckling ultimate attained load have been numerically evaluated. Final failure behaviour of the simulated stiffened panel is due to sudden global failure, as concluded from comparisons between numerical and experimental results being in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Smith CM.: In: Design of marine structures in composite materials. Elsevier Applied Science, Oxford (1990)

  2. Mouring, E.S.: Buckling and postbuckling of composite ship panels stiffened with perform frames. Ocean Eng. 26, 793–803 (1999)

    Article  Google Scholar 

  3. Shenoi, R.A., Wellicome, J.F.: Composites materials in maritime structures, vol. 1. Cambridge University, (1993)

  4. Stevens, K.A., Ricci, R., Davies, G.: Buckling and postbuckling of composite structures. Composites 26, 189–199 (1995)

    Article  Google Scholar 

  5. Orifici, A.C., Thomson, S.R., Degenhardt, R., Kling, A., Rohwer, K., Bayandor, J.: Degradation investigation in a postbuckling composite stiffened fuselage panel. Compos. Struct. 82, 217–224 (2008)

    Article  Google Scholar 

  6. Falzon, G.B., Stevens, A.K., Davies, O.G.: Postbuckling behaviour of a blade-stiffened composite panel loaded in uniaxial compression. Composites A 31, 459–468 (2000)

    Article  Google Scholar 

  7. Higgins, P.E., Wegner, P., Viisoreanu, A., Sanford, G.: Design and testing of the minotaur advanced grid-stiffened fairing. Compos. Struct. 66, 339–349 (2004)

    Article  Google Scholar 

  8. Key, C.T., Garnich, M.R., Hansen, A.C.: Progressive failure predictions for rib stiffened panels based on multicontinuum technology. Compos. Struct. 65, 357–366 (2004)

    Article  Google Scholar 

  9. Raju, I.S., Sistla, R., Krishnamurthy, T.: Fracture mechanics analyses for skin-stiffener debonding. Eng. Fract. Mech. 54, 371–385 (1996)

    Article  Google Scholar 

  10. Wang, J.T., Raju, I.S.: Strain energy release rate formulae for skin-stiffener debond modeled with plate elements. Eng. Fract. Mech. 54, 211–228 (1996)

    Article  Google Scholar 

  11. Jeff, W.H., Scott, M.L., Rodney, S.T., Dieter, H.: The analysis of skin-to-stiffener debonding in composite aerospace structures. Compos. Struct. 57, 425–435 (2002)

    Article  Google Scholar 

  12. Hinton, M., Kaddour, A., Soden, P.: A comparison of the predictive capabilities of current failure theories for composite laminates, judged against experimental evidence. Compos. Sci. Technol. 62, 1725–1797 (2002)

    Article  CAS  Google Scholar 

  13. Puck, A., Schurmann, H.: Failure analysis of frp laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)

    Article  Google Scholar 

  14. Lee, J.D.: Three-dimensional finite element analysis of damage accumulation in composite laminate. Comput. Struct. 15, 335–350 (1982)

    Article  Google Scholar 

  15. Ladeveze, P., Allix, O., Deu, J., Leveque, D.: A mesomodel for localisation and damage computation in laminates. Comput. Meth. Appl. Mech. Eng. 183, 105–122 (2000)

    Article  Google Scholar 

  16. Talreja, R., Yalvac, S., Yats, L.D., Wetters, D.: Transverse cracking and stiffness reduction in cross ply laminates of different matrix toughness. J. Compos. Mater. 26, 1644–1663 (1992)

    Article  CAS  Google Scholar 

  17. Allen, D., Harris, C., Groves, S.A.: thermomechanical constitutive theory for elastic composites with distributed damage. I. Theoretical development. Int. J. Solids Struct. 23, 1301–1318 (1987)

    Article  Google Scholar 

  18. Allen, D., Harris, C., Groves, S.A.: thermomechanical constitutive theory for elastic composites with distributed damage.II. Application to matrix cracking in laminated composites. Int. J. Solids Struct. 23, 1319–1338 (1987)

    Article  Google Scholar 

  19. Laurin, F., Carrere, N., Maire, F.J.: Laminated composite structures subjected to compressive loading: a material and structural analysis. Compos. Struct. 80, 172–182 (2007)

    Article  Google Scholar 

  20. Naik, N.G., Gopalakrishnan, S., Ganguli, R.: Design optimization of composites using genetic algorithms and failure mechanism based failure criterion. Compos. Struct. 83, 354–367 (2008)

    Article  Google Scholar 

  21. Labeas, G., Belesis, S., Stamatelos, D.: Interaction of damage failure and post-buckling behaviour of composite plates with cut-outs by progressive damage modeling. Composites B 39, 304–315 (2008)

    Article  Google Scholar 

  22. Lopes, S.C., Camanho, P.P., Gurdal, Z., Tatting, B.F.: Progressive failure analysis of two-placed, variable-stiffness composite panels. Int. J. Solids Struct. 44, 8493–8516 (2007)

    Article  Google Scholar 

  23. Zhang, Z., Chen, H., Ye, L.: Progressive failure analysis for advanced grid stiffened composite plates/shells. Compos. Struct. 86, 45–54 (2008)

    Article  Google Scholar 

  24. Goyal, K.V., Jaunky, R.N., Johnson, R.E., Ambur, R.D.: Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts. Compos. Struct. 64, 91–105 (2004)

    Article  Google Scholar 

  25. Orifici, C.A., Shah, A.S., Herszberg, I., Kotler, A., Weller, T.: Failure analysis in postbuckled composite T-sections. Compos. Struct. 86, 146–153 (2008)

    Article  Google Scholar 

  26. Falzon, G.B., Hitchings, D.: Capturing mode-switching in postbuckling composite panels using a modified explicit procedure. Compos. Struct. 60, 447–453 (2003)

    Article  Google Scholar 

  27. Hashin, Z.: Failure criteria for unidectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  28. Padhi, G.S., Shenoi, R.A., Moy, S.S.J., Hawkins, G.L.: Progressive failure and ultimate collapse of laminated composite plates in bending. Compos. Struct. 40, 277–291 (1998)

    Article  Google Scholar 

  29. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  30. Camanho, P.P., Matthews, F.L.: A progressive damage model for mechanically fastened joints in composites laminates. J. Compos. Mater. 33, 2248–2280 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas G. Tsouvalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anyfantis, K.N., Tsouvalis, N.G. Post Buckling Progressive Failure Analysis of Composite Laminated Stiffened Panels. Appl Compos Mater 19, 219–236 (2012). https://doi.org/10.1007/s10443-011-9191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9191-1

Keywords

Navigation