Skip to main content
Log in

Boundary Controllability of a Simplified Stabilized Kuramoto-Sivashinsky System

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, we study the controllability of a nonlinear system of coupled second- and fourth-order parabolic equations. This system can be regarded as a simplification of the well-known stabilized Kuramoto-Sivashinsky system. Using only one control applied on the boundary of the second-order equation, we prove that the local-null controllability of the system holds if the square root of the diffusion coefficient of the second-order equation is an irrational number with finite Liouville-Roth constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences. J. Funct. Anal. 267, 2077–2151 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ammar Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence. J. Math. Anal. Appl. 444, 1071–1113 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ammar-Khodja, F., Benabdallah, A., González-Burgos, M., de Teresa, L.: Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields 1, 267–306 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications, 2nd edn. Birkhäuser Boston, Inc., Boston (2007)

    Book  Google Scholar 

  5. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation. Cambridge Tracts in Mathematics, vol. 193. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  6. Carreño, N., Cerpa, E.: Local controllability of the stabilized Kuramoto-Sivashinsky system by a single control acting on the heat equation. J. Math. Pures Appl. 9(106), 670–694 (2016)

    Article  MathSciNet  Google Scholar 

  7. Carreño, N., Cerpa, E., Mercado, A.: Boundary controllability of a cascade system coupling fourth- and second-order parabolic equations. Syst. Control Lett. 133, 104542 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cerpa, E., Mercado, A., Pazoto, A.F.: On the boundary control of a parabolic system coupling KS-KdV and heat equations. Scientia, Ser. A, Math. Sci. 22, 55–74 (2012)

    MathSciNet  Google Scholar 

  9. Cerpa, E., Mercado, A., Pazoto, A.F.: Null controllability of the stabilized Kuramoto-Sivashinsky system with one distributed control. SIAM J. Control Optim. 53, 1543–1568 (2015)

    Article  MathSciNet  Google Scholar 

  10. Geshkovski, B.: Null-controllability of perturbed porous medium gas flow. ESAIM Control Optim. Calc. Var. 26, 85 (2020)

    Article  MathSciNet  Google Scholar 

  11. Gonzalez-Burgos, M., Ouaili, L.: Sharp estimates for biorthogonal families to exponential functions associated to complex sequences without gap conditions. Evol. Equ. Control Theory (2023)

  12. Hernández-Santamaría, V., Peralta, L.: Controllability results for stochastic coupled systems of fourth- and second-order parabolic equations. J. Evol. Equ. 22, 23 (2022)

    Article  MathSciNet  Google Scholar 

  13. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems: Continuous and Approximation Theories, vol. 1. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  14. Le Balc’h, K.: Local controllability of reaction-diffusion systems around nonnegative stationary states. ESAIM Control Optim. Calc. Var. 26, 55 (2020)

    Article  MathSciNet  Google Scholar 

  15. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, Berlin (1972)

    Book  Google Scholar 

  16. Liu, Y., Takahashi, T., Tucsnak, M.: Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19, 20–42 (2013)

    Article  MathSciNet  Google Scholar 

  17. Malomed, B.A., Feng, B.-F., Kawahara, T.: Stabilized Kuramoto-Sivashinsky system. Phys. Rev. E 64, 046304 (2001)

    Article  Google Scholar 

  18. Takahashi, T.: Boundary local null-controllability of the Kuramoto-Sivashinsky equation. Math. Control Signals Syst. 29, 2 (2017)

    Article  MathSciNet  Google Scholar 

  19. Tenenbaum, G., Tucsnak, M.: New blow-up rates for fast controls of Schrödinger and heat equations. J. Differ. Equ. 243, 70–100 (2007)

    Article  Google Scholar 

Download references

Funding

The work of the first author was partially supported by the program “Estancias posdoctorales por México para la formación y consolidación de las y los Investigadores por México” of CONAHCYT, Mexico. He has also received support from project A1-S-17475 of CONAHCYT and PAPIIT grants IN109522 and IN104922 of DGAPA-UNAM. The second author was partially supported by the Labex CIMI (Centre International de Mathématiques et d’Informatique), ANR-11-LABX-0040-CIMI within the ANR-11-IDEX-0002-02 program, Fondecyt grant 1211292 and ANID – Millennium Science Initiative Program NCN19-161. The third author was funded by master scholarship CONICYT-PFCHA/Magíster Nacional/2018-2218130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mercado.

Ethics declarations

Competing Interests

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: A Well-Posedness Result

Here, we give a proof of Proposition 2.1.

Proof

Since \((-\partial _{xx})^{2}:H^{2}(0,\pi )\cap H_{0}^{1}(0,\pi )\subset (H^{2}(0, \pi )\cap H_{0}^{1}(0,\pi ))^{\prime }\to (H^{2}(0,\pi )\cap H_{0}^{1}(0, \pi ))^{\prime}\) and \(-d\partial _{xx}:L^{2}(0,\pi )\subset (H^{2}(0,\pi )\cap H_{0}^{1}(0, \pi ))^{\prime}\to (H^{2}(0,\pi )\cap H_{0}^{1}(0,\pi ))^{\prime}\) are strictly positive self-adjoint operators, we have the following two results due to [4, Thm. 3.1, pp. 143].

If \(f\in L^{2}(t_{1},t_{2};(H^{2}(0,\pi )\cap H_{0}^{1}(0,\pi ))^{\prime})\) and \(u_{1}\in L^{2}(0,\pi )\), then

$$ \left \lbrace \textstyle\begin{array}{l@{\quad}l} u_{t}(t,x) + u_{xxxx}(t,x) = f ,&t\in (t_{1},t_{2}),\,x\in (0,\pi ), \\ u(t,0)=u_{xx}(t,0) = 0,&t\in (t_{1},t_{2}), \\ u(t,\pi )=u_{xx}(t,\pi ) = 0,&t\in (t_{1},t_{2}), \end{array}\displaystyle \right . $$
(A.1)

admits a unique solution \(u\in C([t_{1},t_{2}],L^{2}(0,\pi ))\cap L^{2}(t_{1},t_{2};H^{2}(0, \pi )\cap H_{0}^{1}(0,\pi ))\) satisfying \(u(t_{1},\cdot )=u_{1}\), and we have

$$ \left \lVert u\right \rVert _{L^{2}(t_{1},t_{2};H^{2}\cap H_{0}^{1})}^{2}+ \left \lVert u\right \rVert _{C([t_{1},t_{2}],L^{2})}^{2}\le K_{1} \left (\left \lVert u_{1}\right \rVert _{L^{2}}^{2}+\left \lVert f \right \rVert _{L^{2}(t_{1},t_{2};(H^{2}\cap H_{0}^{1})^{\prime})}^{2} \right ), $$
(A.2)

for some \(K_{1}>0\) independent of \(t_{1}\), \(t_{2}\).

The second result tells that if \(h \in L^{2}(t_{1},t_{2})\) and \(v_{1}\in H^{-1}(0,\pi )\), then

$$ \left \lbrace \textstyle\begin{array}{l@{\quad}l} v_{t}(t,x) - d v_{xx}(t,x) = 0, &t\in (t_{1},t_{2}),\,x\in (0,\pi ), \\ v(t,0) = h(t),\, v(t,\pi )=0,&t\in (t_{1},t_{2}), \end{array}\displaystyle \right . $$
(A.3)

admits a unique solution \(v\in C([t_{1},t_{2}],H^{-1}(0,\pi ))\cap L^{2}(t_{1},t_{2};L^{2}(0, \pi ))\) satisfying \(v(t_{1},\cdot )=v_{1}\). Moreover, we have the following energy estimate

$$ \left \lVert v\right \rVert _{L^{2}(t_{1},t_{2};L^{2})}^{2}+\left \lVert v\right \rVert _{C([t_{1},t_{2}],H^{-1})}^{2}\le K_{2}\left ( \left \lVert v_{1}\right \rVert _{H^{-1}}^{2} + \left \lVert h\right \rVert _{L^{2}(t_{1},t_{2})}^{2} \right ), $$

with \(K_{2}>0\) independent of \(t_{1}\), \(t_{2}\).

We will now exploit the cascade structure of the system. Notice that if \(v\in L^{2}(t_{1},t_{2}; L^{2}(0,\pi ))\), then in particular \(v\in L^{2}(t_{1},t_{2};(H^{2}(0,\pi )\cap H_{0}^{1}(0,\pi ))^{\prime})\) and

$$ \left \lVert v\right \rVert _{L^{2}(t_{1},t_{2};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}\le \left \lVert v\right \rVert _{L^{2}(t_{1},t_{2};L^{2})}^{2}. $$

We take \(v\) to be the solution of (A.3), and \(u\) to be the solution of (A.1) with right hand side \(f+v\). Since

$$ \left \lVert v+f\right \rVert _{L^{2}(t_{1},t_{2};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}\le 2\left (\left \lVert f\right \rVert _{L^{2}(t_{1},t_{2};(H^{2} \cap H_{0}^{1})^{\prime})}^{2}+\left \lVert v\right \rVert _{L^{2}(t_{1},t_{2};(H^{2} \cap H_{0}^{1})^{\prime})}^{2}\right ), $$

we get

$$ \left \lVert v\right \rVert _{L^{2}(t_{1},t_{2};L^{2})}^{2}+\left \lVert v\right \rVert _{C([t_{1},t_{2}],H^{-1})}^{2}\le K_{2}\left ( \left \lVert h\right \rVert _{L^{2}(t_{1},t_{2})}^{2} +\left \lVert v_{1} \right \rVert _{H^{-1}}^{2} \right ), $$
(A.4)

and

$$\begin{aligned} \left \lVert u\right \rVert _{L^{2}(t_{1},t_{2};H^{2}\cap H_{0}^{1})}^{2}+ \left \lVert u\right \rVert _{C([t_{1},t_{2}],L^{2})}^{2} &\le K_{1} \left (\left \lVert u_{1}\right \rVert _{L^{2}}^{2}+\left \lVert f+v \right \rVert _{L^{2}(t_{1},t_{2};(H^{2}\cap H_{0}^{1})^{\prime})}^{2} \right ) \\ &\le 2K_{1}\left (\left \lVert u_{1}\right \rVert _{L^{2}}^{2}+\left \lVert f\right \rVert _{L^{2}(t_{1},t_{2};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}\right ) \\ &\quad +2K_{2}K_{1}\left (\left \lVert h\right \rVert _{L^{2}(t_{1},t_{2})}^{2} +\left \lVert v_{1}\right \rVert _{H^{-1}}^{2} \right ), \end{aligned}$$
(A.5)

where we have used (A.4) in the last line. Writing \(y=(u,v)\) and \(y_{1}=(u_{1},v_{1})\), we can combine (A.4) and (A.5) and take \(C_{1}=\max \{K_{2},(2K_{1}+1)K_{2}\}\) to deduce

$$ \begin{aligned} \left \lVert y\right \rVert _{L^{2}(t_{1},t_{2};(H^{2} \cap H_{0}^{1})\times L^{2})}^{2}&+\left \lVert y\right \rVert _{C([t_{1},t_{2}],L^{2} \times H^{-1})}^{2} \\ &\le C\left (\left \lVert h\right \rVert _{L^{2}(t_{1},t_{2})}^{2} + \left \lVert y_{1}\right \rVert _{L^{2}\times H^{-1}}^{2} +\left \lVert f\right \rVert _{L^{2}(t_{1},t_{2};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}\right ). \end{aligned} $$

This concludes the proof. □

Appendix B: Sketch of the Proof of Proposition 2.2

We define \(T_{k}=T\left (1-\dfrac{1}{q^{k}}\right )\). Notice that with this

$$ \rho _{0}(T_{k+2})=\rho _{1}(T_{k})K(T_{k+2}-T_{k+1}). $$

Consider the notation \(y=(u,v)\). We recursively define \(y_{k+1}\) as \(z(T_{k+1})\), where \(z=(z_{1},z_{2})\) solves (2.1) on \((T_{k},T_{k+1})\) with initial condition \(z(T_{k})=0\) and control \(h=0\). By Proposition 2.1 we have

$$ \left \lVert z\right \rVert _{L^{2}(T_{k},T_{k+1};(H^{2}\cap H_{0}^{1}) \times L^{2})}^{2}+\left \lVert z\right \rVert _{C([T_{k},T_{k+1}],L^{2} \times H^{-1})}^{2}\le C_{1}\left \lVert f\right \rVert _{L^{2}(T_{k},T_{k+1};(H^{2} \cap H_{0}^{1})^{\prime})}^{2}, $$

with this

$$ \left \lVert y_{k+1}\right \rVert _{L^{2}\times H^{-1}}^{2}=\left \lVert z(T_{k+1})\right \rVert _{L^{2}\times H^{-1}}^{2}\le \left \lVert z\right \rVert _{C([T_{k},T_{k+1}],L^{2}\times H^{-1})}^{2} \le C_{1}\left \lVert f\right \rVert _{L^{2}(T_{k},T_{k+1};(H^{2} \cap H_{0}^{1})^{\prime})}^{2}. $$

Define \(h\) on \((T_{k},T_{k+1})\) as the minimal norm control that drives (2.1) to zero at time \(T_{k+1}\) with initial condition \(y_{k}\) at time \(T_{k}\) and source term \(f\equiv 0\). We denote the corresponding solution by \(w\). Since we have assumed that system (2.1) with \(f\equiv 0\) is null-controllable with control cost \(K(\cdot )\), we have, because of Remark 3.3,

$$ \left \lVert h\right \rVert _{L^{2}(T_{k},T_{k+1})}^{2}\le K^{2}(T_{k+1}-T_{k}) \left \lVert y_{k}\right \rVert _{L^{2}\times H^{-1}}^{2} $$

and therefore

$$\begin{aligned} \left \lVert h\right \rVert _{L^{2}(T_{k+1},T_{k+2})}^{2} \le& K^{2}(T_{k+2}-T_{k+1}) \left \lVert y_{k+1}\right \rVert _{L^{2}\times H^{-1}}^{2} \\ \le& C_{1}K^{2}(T_{k+2}-T_{k+1}) \left \lVert f\right \rVert _{L^{2}(T_{k},T_{k+1};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}. \end{aligned}$$

We define \(y=z+w\). Since \(z(T_{k}^{-})+w(T_{k}^{-})=z(T_{k}^{+})+w(T_{k}^{+})\), \(y\) is continuous at \(T_{k}\) for every \(k\geq 0\). With this definition, it is also clear that \(y\) solves (2.1) for \(t\in [0,T)\).

Notice that, due to the fact that \(\rho _{0}\) and \(\rho _{1}\) are nonincreasing

$$ \begin{aligned} \left \lVert h\right \rVert _{L_{\rho _{0}}^{2}(T_{k+1},T_{k+2})}^{2}& \le \dfrac{1}{\rho _{0}^{2}(T_{k+2})}\left \lVert h\right \rVert _{L^{2}(T_{k+1},T_{k+2})}^{2} \\ &\le C_{1}\dfrac{K^{2}(T_{k+2}-T_{k+1})}{\rho _{0}^{2}(T_{k+2})}\left \lVert f\right \rVert _{L^{2}(T_{k},T_{k+1};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2} \\ &\le \dfrac{C_{1}}{\rho _{1}^{2}(T_{k})}\left \lVert f\right \rVert _{L^{2}(T_{k},T_{k+1};(H^{2} \cap H_{0}^{1})^{\prime})}^{2}\le C_{1}\left \lVert f\right \rVert _{L_{\rho _{1}}^{2}(T_{k},T_{k+1};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}, \end{aligned} $$
(B.1)

and

$$ \left \lVert h\right \rVert _{L_{\rho _{0}}^{2}(0,T_{1})}^{2}\le \dfrac{1}{\rho _{0}^{2}(T_{1})}\left \lVert h\right \rVert _{L^{2}(0,T_{1})}^{2} \le \dfrac{K^{2}(T_{1})}{\rho _{0}^{2}(T_{1})}\left \lVert y_{0} \right \rVert _{L^{2}\times H^{-1}}^{2}. $$
(B.2)

Proposition 2.1 yields

$$\begin{aligned} &\left \lVert y\right \rVert _{L_{\rho _{0}}^{2}(T_{k+1},T_{k+2};(H^{2} \cap H_{0}^{1})\times L^{2})}^{2}+\left \lVert \dfrac{y}{\rho _{0}} \right \rVert _{C([T_{k+1},T_{k+2}],L^{2}\times H^{-1})}^{2} \\ &\quad \le C_{1}^{2}\left (1+\dfrac{1}{K^{2}(T_{k+2}-T_{k+1})}\right ) \left \lVert f\right \rVert _{L_{\rho _{1}}^{2}(T_{k},T_{k+1};(H^{2} \cap H_{0}^{1})^{\prime})}^{2} \\ &\qquad +\dfrac{C_{1}}{K^{2}(T_{k+2}-T_{k+1})}\left \lVert f\right \rVert _{L_{\rho _{1}}^{2}(T_{k+1},T_{k+2};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2} \end{aligned}$$
(B.3)

and also

$$ \begin{aligned} &\left \lVert y\right \rVert _{L_{\rho _{0}}^{2}(0,T_{1};(H^{2} \cap H_{0}^{1})\times L^{2})}^{2}+\left \lVert \dfrac{y}{\rho _{0}} \right \rVert _{C([0,T_{1}],L^{2}\times H^{-1})}^{2} \\ &\quad \le \dfrac{C_{1}(K^{2}(T_{1})+1)}{\rho _{0}^{2}(T_{1})}\left \lVert y_{0}\right \rVert _{L^{2}\times H^{-1}}^{2}+ \dfrac{C_{1}\rho _{1}^{2}(0)}{\rho _{0}^{2}(T_{1})}\left \lVert f \right \rVert _{L_{\rho _{1}}^{2}(0,T_{1};(H^{2}\cap H_{0}^{1})^{ \prime})}^{2}. \end{aligned} $$
(B.4)

It follows from Proposition 2.1 that \(y\) is continuous on \([0,T]\), with values in \(L^{2}\times H^{-1}\). Because \(\rho _{0}\) is positive on \([0,T)\), \(\frac{y}{\rho _{0}}\) is also continuous on \([0,T)\). Since the right hand side of (B.3) converges to 0 as \(k\to \infty \), it follows that \(\frac{y(t)}{\rho _{0}}\to 0\) in \(L^{2}\times H^{-1}\) as \(t\to T^{-}\). With this, we may extend \(\frac{y}{\rho _{0}}\) to \([0,T]\) and it remains continuous, in particular, this implies that \((u(T),v(T))=0\). This tells us that the control \(h\) constructed drives the state to zero, and also gives a bound on how quickly the convergence takes place, namely, faster than \(\rho _{0}\) approaches 0.

Combining estimates (B.1)–(B.2) with (B.3)–(B.4) we can deduce the existence of a constant \(C_{2}>0\) such that (2.2) holds. This ends the proof.  □

Appendix C: Liouville-Roth Constant of the Reciprocal of a Number

Lemma C.1

Let \(x>0\). Then \(x\) and \(1/x\) have the same Liouville-Roth constant.

Proof

Assume without loss of generality that the Liouville-Roth constant of \(1/x\) is strictly greater than that of \(x\) (this implies \(x\) has finite Liouville-Roth constant). Fix \(r\) strictly in between both Liouville-Roth constants and \(\varepsilon >0\) such that \(r+\varepsilon \) is also in this interval. By definition, there exist infinitely many pairs \((p,q)\in \mathbb{Z}^{2}\) with \(q>0\) such that

$$ 0< \left |\frac{1}{x}-\frac{p}{q}\right |< \frac{1}{q^{r+\varepsilon}}, $$

so we may construct a sequence \((p_{n},q_{n})\) of distinct such pairs. Since for a given \(q_{n}\), only finitely many values of \(p_{n}\) can satisfy the equation, we know by the pigeonhole principle that \(q_{n}\to \infty \) as \(n\to \infty \). With this, \(\frac{p_{n}}{q_{n}}\to \frac{1}{x}\), which implies \(p_{n}\to \infty \) and \(\frac{q_{n}}{p_{n}}\to x\). Notice that

$$ 0< \left |x-\frac{q_{n}}{p_{n}}\right |p_{n}^{r}=\frac{xq_{n}}{p_{n}} \left |\frac{p_{n}}{q_{n}}-\frac{1}{x}\right |q_{n}^{r+\varepsilon} \left (\frac{p_{n}}{q_{n}}\right )^{r+\varepsilon} \frac{1}{p_{n}^{\varepsilon}}\to 0, $$

since \(\frac{xq_{n}}{p_{n}}\left (\frac{p_{n}}{q_{n}}\right )^{r+ \varepsilon}\to x^{2-r-\varepsilon}\), \(\left |\frac{p_{n}}{q_{n}}-\frac{1}{x}\right |q_{n}^{r+\varepsilon}<1\) and \(\frac{1}{p_{n}^{\varepsilon}}\to 0\). It follows that there are infinitely many pairs \((p,q)\) such that

$$ 0< \left |x-\frac{q}{p}\right |< \frac{1}{p^{r}}, $$

which contradicts the fact that \(r\) is greater that the Liouville-Roth constant of \(x\). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Santamaría, V., Mercado, A. & Visconti, P. Boundary Controllability of a Simplified Stabilized Kuramoto-Sivashinsky System. Acta Appl Math 188, 17 (2023). https://doi.org/10.1007/s10440-023-00626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00626-x

Keywords

Mathematics Subject Classification

Navigation