Skip to main content
Log in

Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We develop versions of the subgradient extragradient method for variational inequalities in Hilbert spaces and establish sufficient conditions for their convergence. First we prove a sufficient condition for a weak convergence of a recent existing algorithm under relaxed assumptions. Then, we propose two other algorithms. Both weak and strong convergence of the considered algorithms are studied. Under additional strong pseudomonotonicity and Lipschitz continuity assumptions, we obtain also a \(Q\)-linear convergence rate of these algorithms. Our results improve some recent contributions in the literature. Illustrative numerical experiments are also provided by the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. Mat. Metody 12, 1164–1173 (1976)

    Google Scholar 

  2. Ceng, L.C., Teboulle, M., Yao, J.C.: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 146, 19–31 (2010)

    Article  MathSciNet  Google Scholar 

  3. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  4. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    Article  MathSciNet  Google Scholar 

  5. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cottle, R.W., Yao, J.C.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992)

    Article  MathSciNet  Google Scholar 

  7. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–765 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dong, Q.L., Jiang, D., Gibali, A.: A modified subgradient extragradient method for solving the variational inequality problem. Numer. Algorithms 79, 927–940 (2018)

    Article  MathSciNet  Google Scholar 

  9. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  10. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)

    MATH  Google Scholar 

  11. Halpern, B.: Fixed points of nonexpanding maps. Proc. Am. Math. Soc. 73, 957–961 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Harker, P.T., Pang, J.S.: A damped-Newton method for the linear complementarity problem. In: Allgower, G., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. Lectures in Appl. Math., vol. 26, pp. 265–284. AMS, Providence (1990)

    Google Scholar 

  13. He, B.S.: A class of new methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hieu, D.V., Thong, D.V.: New extragradient-like algorithms for strongly pseudomonotone variational inequalities. J. Glob. Optim. 70, 385–399 (2018)

    Article  MathSciNet  Google Scholar 

  15. Iusem, A.N., Nasri, M.: Korpelevich’s method for variational inequality problems in Banach spaces. J. Glob. Optim. 50, 59–76 (2011)

    Article  MathSciNet  Google Scholar 

  16. Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37–46 (1990)

    Article  MathSciNet  Google Scholar 

  17. Khanh, P.D.: A new extragradient method for strongly pseudomonotone variational inequalities. Numer. Funct. Anal. Optim. 37, 1131–1143 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  19. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2000)

    MATH  Google Scholar 

  20. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Kraikaew, R., Saejung, S.: Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 163, 399–412 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lyashko, S.I., Semenov, V.V., Voitova, T.A.: Low-cost modification of Korpelevich’s method for monotone equilibrium problems. Cybern. Syst. Anal. 47, 631–639 (2011)

    Article  MathSciNet  Google Scholar 

  23. Maingé, P.E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008)

    Article  MathSciNet  Google Scholar 

  24. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  25. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  26. Shehu, Y., Iyiola, O.S.: Strong convergence result for monotone variational inequalities. Numer. Algorithms 76, 259–282 (2017)

    Article  MathSciNet  Google Scholar 

  27. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  28. Thong, D.V., Gibali, A.: Extragradient methods for solving non-Lipschitzian pseudo-monotone variational inequalities. J. Fixed Point Theory Appl. 21, 20 (2019)

    Article  MathSciNet  Google Scholar 

  29. Thong, D.V., Hieu, D.V.: Weak and strong convergence theorems for variational inequality problems. Numer. Algorithms 78, 1045–1060 (2018)

    Article  MathSciNet  Google Scholar 

  30. Thong, D.V., Hieu, D.V.: Modified subgradient extragradient method for variational inequality problems. Numer. Algorithms 79, 597–610 (2018)

    Article  MathSciNet  Google Scholar 

  31. Thong, D.V., Hieu, D.V.: Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 314, 80–98 (2018)

    Article  MathSciNet  Google Scholar 

  32. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (1998)

    Article  MathSciNet  Google Scholar 

  33. Vuong, P.T.: On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J. Optim. Theory Appl. 176, 399–409 (2018)

    Article  MathSciNet  Google Scholar 

  34. Vuong, P.T., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81, 269–291 (2018)

    Article  MathSciNet  Google Scholar 

  35. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  Google Scholar 

  36. Yang, J., Liu, H., Liu, Z.: Modified subgradient extragradient algorithms for solving monotone variational inequalities. Optimization 67, 2247–2258 (2018)

    Article  MathSciNet  Google Scholar 

  37. Yao, Y., Postolache, M.: Iterative methods for pseudomonotone variational inequalities and fixed point problems. J. Optim. Theory Appl. 155, 273–287 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under the grant number 101.01-2020.23. A significant part of the paper was completed during a scientific stay of the authors at the Vietnam Institute for Advanced Study in Mathematics (VIASM), whose support and hospitality are gratefully appreciated. The third named author is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2020.09. The authors are very thankful to the Editor and the two anonymous Reviewers for their valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duong Viet Thong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanh, P.Q., Thong, D.V. & Vinh, N.T. Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities. Acta Appl Math 170, 319–345 (2020). https://doi.org/10.1007/s10440-020-00335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00335-9

Keywords

Mathematics Subject Classification

Navigation