Skip to main content
Log in

Bernstein Fractal Trigonometric Approximation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Fractal interpolation and approximation received a lot of attention in the last thirty years. The main aim of the current article is to study a fractal trigonometric approximants which converge to the given continuous function even if the magnitude of the scaling factors does not approach zero. In this paper, we first introduce a new class of fractal approximants, namely, Bernstein \(\alpha \)-fractal functions using the theory of fractal approximation and Bernstein polynomial. Using the proposed class of fractal approximants and imposing no condition on corresponding scaling factors, we establish that the set of Bernstein \(\alpha \)-fractal trigonometric functions is fundamental in the space of continuous periodic functions. Fractal version of Gauss formula of trigonometric interpolation is obtained by means of Bernstein trigonometric fractal polynomials. We study the Bernstein fractal Fourier series of a continuous periodic function \(f\) defined on \([-l,l]\). The Bernstein fractal Fourier series converges to \(f\) even if the magnitude of the scaling factors does not approach zero. Existence of the \(\mathcal{C}^{r}\)-Bernstein fractal functions is investigated, and Bernstein cubic spline fractal interpolation functions are proposed based on the theory of \(\mathcal{C}^{r}\)-Bernstein fractal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Uber die analytische Darsstellbarkeit Sogenannter Willkurlicher Dunctionen einer reellen Veranderlichen. Sitz-Ber. Akad. d. Wiss. Berlin, 633–639 u. 789–805

  2. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chand, A.K.B., Kapoor, G.P.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11(3), 277–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841–865 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Navascués, M.A.: Non-smoothpolynomials. Int. J. Math. Anal. 1, 159–174 (2007)

    MathSciNet  Google Scholar 

  8. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4, 953–974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Navascués, M.A.: Fractal bases of \(L_{p}\) spaces. Fractals 20, 141–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Navascués, M.A., Chand, A.K.B.: Fundamental sets of fractal functions. Acta Appl. Math. 100, 247–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation. J. Inequal. Appl. 2006, 78734 (2006). https://doi.org/10.1155/JIA/2006/78734

    Article  MathSciNet  MATH  Google Scholar 

  12. Navascués, M.A.: Fractal trigonometric approximation. Electron. Trans. Numer. Anal. 20, 64–74 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Chand, A.K.B., Navascués, M.A., Viswanathan, P., Katiyar, S.K.: Fractal trigonometric polynomials for restricted range approximation. Fractals 24, 1650022 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chand, A.K.B., Tyda, K.R.: Partially blended constrained rational cubic trigonometric fractal interpolation surfaces. Fractals 24, 1650027 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gal, S.G.: Shape Preserving Approximation by Real and Complex Polynomials. Birkhäuser, Boston (2008)

    Book  MATH  Google Scholar 

  16. Nasim Akhtar, M.D., Guru Prem Prasad, M., Navascués, M.A.: Box dimensions of \(\alpha \)-fractal functions. Fractals 24(3), 1650037 (2016). https://doi.org/10.1142/S0218348X16500377

    Article  MathSciNet  MATH  Google Scholar 

  17. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1996)

    MATH  Google Scholar 

  18. Hall, C.A., Meyer, W.W.: Optimal error bounds for cubic spline interpolation. J. Approx. Theory 16(2), 105–122 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for helpful and constructive comments that greatly contributed to improve the quality and presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vijender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijender, N. Bernstein Fractal Trigonometric Approximation. Acta Appl Math 159, 11–27 (2019). https://doi.org/10.1007/s10440-018-0182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-0182-1

Keywords

Mathematics Subject Classification

Navigation