Skip to main content
Log in

A Class of Impulsive Stochastic Parabolic Functional Differential Equations and Their Asymptotics

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of the initial value problem for a class of semilinear impulsive stochastic parabolic functional differential equations. Incorporating certain positive operators, these equations have as archetype impulsive stochastic functional heat differential equations supplemented by homogeneous Dirichlet boundary conditions. By the classical Galerkin’s method, we prove a well-posedness result for the initial value problem for a class of linear random evolution equation which is necessary in developing our main theory. Using this well-posedness result and the classical contraction mapping argument, we prove that the initial value problem under consideration is globally well-posed. Employing the technique of Razumikhin, we prove under some additional assumptions that the trivial solution of the equation in question is mean-square exponentially stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Consult [3, pp. 293–308] for frequently-used results related to the complexification of real Hilbert spaces.

References

  1. Allen, E.J.: Stochastic differential equations and persistence time for two interacting populations. Dyn. Contin. Discrete Impuls. Syst. 5, 271–281 (1999). Differential equations and dynamical systems, Waterloo, ON, 1997.

    MathSciNet  MATH  Google Scholar 

  2. Anokhin, A., Berezansky, L., Braverman, E.: Exponential stability of linear delay impulsive differential equations. J. Math. Anal. Appl. 193, 923–941 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, J.-P.: Applied Functional Analysis, 2nd edn. Pure and Applied Mathematics (New York). Wiley-Interscience, New York (2000). Translated from the French by Carole Labrousse

    Book  MATH  Google Scholar 

  4. Berezansky, L., Braverman, E.: Explicit conditions of exponential stability for a linear impulsive delay differential equation. J. Math. Anal. Appl. 214, 439–458 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berezansky, L., Ideals, L.: Exponential stability of some scalar impulsive delay differential equations. Commun. Appl. Anal. 2, 301–308 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Chen, H.: Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays. Stat. Probab. Lett. 80, 50–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Fu, X.: New Razumikhin-type theorems on the stability for impulsive functional differential systems. Nonlinear Anal. 66, 2040–2052 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, F., Wen, X.: Asymptotic stability for impulsive functional differential equation. J. Math. Anal. Appl. 336, 1149–1160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., Zhu, C., Zhang, Y.: A note on exponential stability for impulsive neutral stochastic partial functional differential equations. Appl. Math. Comput. 227, 139–147 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cheng, P., Deng, F.: Global exponential stability of impulsive stochastic functional differential systems. Stat. Probab. Lett. 80, 1854–1862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  12. Faria, T., Gadotti, M.C., Oliveira, J.J.: Stability results for impulsive functional differential equations with infinite delay. Nonlinear Anal. 75, 6570–6587 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, X., Li, X.: Razumikhin-type theorems on exponential stability of impulsive infinite delay differential systems. J. Comput. Appl. Math. 224, 1–10 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, X.L., Zhou, L.: Stability for impulsive functional differential equations with infinite delays. Acta Math. Sin. Engl. Ser. 26, 909–922 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gu, H., Jiang, H., Teng, Z.: Mean square exponential stability in high-order stochastic impulsive neural networks with time-varying delays. J. Appl. Math. Comput. 30, 151–170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guan, Z., Liu, Y.: Exponential stability of linear time-varying impulsive differential systems with delays. Ann. Differ. Equ. 12, 51–59 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Hernández M., E., Rabello, M., Henríquez, H.R.: Existence of solutions for impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331, 1135–1158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, F., Shen, J.: On the asymptotic stability for impulsive functional differential equations. Acta Math. Hung. 134, 307–321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kao, Y., Zhu, Q., Qi, W.: Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching. Appl. Math. Comput. 271, 795–804 (2015)

    MathSciNet  Google Scholar 

  20. Li, K.: Global exponential stability of impulsive fuzzy cellular neural networks with delays and diffusion. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19, 245–261 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, X., Fu, X.: Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks. J. Comput. Appl. Math. 234, 407–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X., Fu, X.: On the global exponential stability of impulsive functional differential equations with infinite delays or finite delays. Commun. Nonlinear Sci. Numer. Simul. 19, 442–447 (2014)

    Article  MathSciNet  Google Scholar 

  23. Li, D., He, D., Xu, D.: Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen–Grossberg neural networks with delays. Math. Comput. Simul. 82(8), 1531–1543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, C., Li, C., Huang, T.: Exponential stability of impulsive high-order Hopfield-type neural networks with delays and reaction-diffusion. Int. J. Comput. Math. 88, 3150–3162 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, X., Zhu, Q., O’Regan, D.: \(p\)-Th moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs. J. Franklin Inst. 351, 4435–4456 (2014)

    Article  MathSciNet  Google Scholar 

  26. Liu, B., Liu, X., Teo, K.L., Wang, Q.: Razumikhin-type theorems on exponential stability of impulsive delay systems. IMA J. Appl. Math. 71, 47–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, K., Shi, Y.: Razumikhin-Type Theorems of Infinite Dimensional Stochastic Functional Differential Equations. Systems, Control, Modeling and Optimization. IFIP Int. Fed. Inf. Process., vol. 202, pp. 237–247. Springer, New York (2006)

    MATH  Google Scholar 

  28. Liu, X., Wang, Q.: On stability in terms of two measures for impulsive systems of functional differential equations. J. Math. Anal. Appl. 326, 252–265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo, J., Hou, Z., Zou, J.: Exponential stability of stochastic delay differential equations with Markovian switching. In: Dyn. Contin. Discrete Impuls. Syst. Ser. B, Appl. Algorithms, Proceedings of the Second International Symposium on Intelligent and Complex Systems, Huazhong University of Science and Technology, Wuhan, October 17–20, 2001, pp. 125–129 (2003)

    Google Scholar 

  30. Luo, Z., Shen, J.: Stability results for impulsive functional differential equations with infinite delays. J. Comput. Appl. Math. 131, 55–64 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo, Z., Shen, J.: Impulsive stabilization of functional differential equations with infinite delays. Appl. Math. Lett. 16, 695–701 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mao, X.: Razumikhin-type theorems on exponential stability of stochastic functional differential equations. Stoch. Process. Appl. 65, 233–250 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohammed, S.E.A.: Stochastic Functional Differential Equations. Research Notes in Mathematics, vol. 99. Pitman, Boston (1984)

    MATH  Google Scholar 

  34. Pan, L., Cao, J.: Exponential stability of impulsive stochastic functional differential equations. J. Math. Anal. Appl. 382, 672–685 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pan, J., Liu, X., Zhong, S.: Exponential stability of impulsive bidirectional associative memory neural networks with time-varying delays and reaction-diffusion terms. Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal. 15, 333–338 (2008)

    MathSciNet  Google Scholar 

  36. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  37. Peng, S., Zhang, Y.: Razumikhin-type theorems on \(p\)-th moment exponential stability of impulsive stochastic delay differential equations. IEEE Trans. Autom. Control 55, 1917–1922 (2010)

    Article  MathSciNet  Google Scholar 

  38. Ren, Y., Lu, S., Xia, N.: Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay. J. Comput. Appl. Math. 220, 364–372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, J., Yan, J.: Razumikhin type stability theorems for impulsive functional-differential equations. Nonlinear Anal. 33, 519–531 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stamova, I.M.: Razumikhin-type theorems on stability in terms of two measures for impulsive functional differential systems. Note Mat. 26, 69–80 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Stamova, I.M., Stamov, G.T.: Lyapunov–Razumikhin method for impulsive functional equations and applications to the population dynamics. J. Comput. Appl. Math. 130, 163–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, J., Li, X.: New Razumikhin type stability theorem for impulsive functional differential equations with infinite delays. Anal. Appl. 9, 315–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Q., Liu, X.: Exponential stability for impulsive delay differential equations by Razumikhin method. J. Math. Anal. Appl. 309, 462–473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Q., Liu, X.: Impulsive stabilization of delay differential systems via the Lyapunov–Razumikhin method. Appl. Math. Lett. 20, 839–845 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, L., Li, X., O’Regan, D.: Strict stability of impulsive functional differential equations with infinite delays. Dyn. Syst. Appl. 22, 171–182 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Wang, X., Xu, D.: Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms. Chaos Solitons Fractals 42, 2713–2721 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wei, F., Wang, K.: The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J. Math. Anal. Appl. 331, 516–531 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, X., Zhu, Q.: \(p\)th moment exponential stability of stochastic partial differential equations with Poisson jumps. Asian J. Control 16, 1482–1491 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, X., Zhu, Q.: Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type. J. Math. Phys. 56, 122701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, Z., Zhu, E., Xu, Y., Tan, Y.: Razumikhin-type theorems on exponential stability of stochastic functional differential equations with infinite delay. Acta Appl. Math. 111, 219–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Wu, S., Li, K.: Delay-dependent exponential stability for impulsive Cohen–Grossberg neural networks with time-varying delays and reaction-diffusion terms. Commun. Nonlinear Sci. Numer. Simul. 16, 1524–1532 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu, Q.: \(p\)-Th moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J. Franklin Inst. 351, 3965–3986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhu, Q., Song, B.: Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays. Nonlinear Anal., Real World Appl. 12, 2851–2860 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhu, W.: Global exponential stability of impulsive reaction-diffusion equation with variable delays. Appl. Math. Comput. 205, 362–369 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their valuable suggestions which led an interesting improvement of the manuscript. The work is supported by NSFC (#11471231, #11571244 and #11401404), such support is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C. A Class of Impulsive Stochastic Parabolic Functional Differential Equations and Their Asymptotics. Acta Appl Math 146, 163–186 (2016). https://doi.org/10.1007/s10440-016-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-016-0063-4

Keywords

Mathematics Subject Classification

Navigation