Skip to main content
Log in

The Maxwell-Stefan Diffusion Limit for a Kinetic Model of Mixtures

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider the non-reactive elastic Boltzmann equation for multicomponent gaseous mixtures. We deduce, under the standard diffusive scaling, that well prepared initial conditions lead to solutions satisfying the Maxwell-Stefan diffusion equations in the vanishing Mach and Knudsen numbers limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Andries, P., Aoki, K., Perthame, B.: A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106(5–6), 993–1018 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bardos, C., Golse, F., Levermore, C.D.: Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles. C. R. Acad. Sci., Sér. 1 Math. 309(11), 727–732 (1989)

    MATH  MathSciNet  Google Scholar 

  3. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1-2), 323–344 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46(5), 667–753 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bisi, M., Desvillettes, L.: Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases. Modél. Math. Anal. Numér. (2014, to appear). doi:10.1051/m2an/2013135

  6. Bothe, D.: On the Maxwell-Stefan approach to multicomponent diffusion. In: Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 80, pp. 81–93. Birkhäuser/Springer, Basel (2011)

    Chapter  Google Scholar 

  7. Boudin, L., Götz, D., Grec, B.: Diffusion models of multicomponent mixtures in the lung. In: CEMRACS 2009: Mathematical modelling in medicine. ESAIM Proc., vol. 30, pp. 90–103. EDP Sciences, Les Ulis (2010)

    Google Scholar 

  8. Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6(1), 137–157 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boudin, L., Grec, B., Salvarani, F.: A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete Contin. Dyn. Syst., Ser. B 17(5), 1427–1440 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brull, S., Pavan, V., Schneider, J.: Derivation of a BGK model for mixtures. Eur. J. Mech. B, Fluids 33, 74–86 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang, H.K.: Multicomponent diffusion in the lung. Fed. Proc. 39(10), 2759–2764 (1980)

    Google Scholar 

  12. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B, Fluids 24(2), 219–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duncan, J.B., Toor, H.L.: An experimental study of three component gas diffusion. AIChE J. 8(1), 38–41 (1962)

    Article  Google Scholar 

  14. Garzó, V., Santos, A., Brey, J.J.: A kinetic model for a multicomponent gas. Phys. Fluids A 1(2), 380–383 (1989)

    Article  MATH  Google Scholar 

  15. Giovangigli, V.: Multicomponent flow modeling. In: Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Cambridge (1999)

    Google Scholar 

  16. Golse, F., Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Golse, F., Saint-Raymond, L.: The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. (9) 91(5), 508–552 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8(10), 437–479 (1902)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jüngel, A., Stelzer, I.V.: Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45(4), 2421–2440 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krishna, R., Wesselingh, J.A.: The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52(6), 861–911 (1997)

    Article  Google Scholar 

  21. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1866)

    Article  Google Scholar 

  22. Morse, T.F.: Kinetic model equations for a gas mixture. Phys. Fluids 7, 2012–2013 (1964)

    Article  MathSciNet  Google Scholar 

  23. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79(1), 83–99 (1979)

    Article  MathSciNet  Google Scholar 

  24. Sirovich, L.: Kinetic modeling of gas mixtures. Phys. Fluids 5, 908–918 (1962)

    Article  MathSciNet  Google Scholar 

  25. Stefan, J.: Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen. Akad. Wiss. Wien 63, 63–124 (1871)

    Google Scholar 

  26. Thiriet, M., Douguet, D., Bonnet, J.-C., Canonne, C., Hatzfeld, C.: The effect on gas mixing of a He-O2 mixture in chronic obstructive lung diseases. Bull. Eur. Physiopathol. Respir. 15(5), 1053–1068 (1979). In French

    Google Scholar 

  27. Williams, F.A.: Combustion Theory, 2nd edn. Benjamin-Cummings, Redwood City (1985)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the ANR-08-JCJC-013-01 project M3RS, headed by Céline Grandmont, and by the ANR-11-TECS-0006 project OxHelease, coordinated by Caroline Majoral. B. Grec and F. Salvarani also want to acknowledge the Reo project-team from Inria Paris-Rocquencourt, for its hospitality which allowed to carry out this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Boudin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudin, L., Grec, B. & Salvarani, F. The Maxwell-Stefan Diffusion Limit for a Kinetic Model of Mixtures. Acta Appl Math 136, 79–90 (2015). https://doi.org/10.1007/s10440-014-9886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9886-z

Keywords

Navigation