Skip to main content
Log in

Cardiorespiratory Sensors and Their Implications for Out-of-Hospital Cardiac Arrest Detection: A Systematic Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Out-of-hospital cardiac arrest (OHCA) is a major health problem, with a poor survival rate of 2–11%. For the roughly 75% of OHCAs that are unwitnessed, survival is approximately 2–4.4%, as there are no bystanders present to provide life-saving interventions and alert Emergency Medical Services. Sensor technologies may reduce the number of unwitnessed OHCAs through automated detection of OHCA-associated physiological changes. However, no technologies are widely available for OHCA detection. This review identifies research and commercial technologies developed for cardiopulmonary monitoring that may be best suited for use in the context of OHCA, and provides recommendations for technology development, testing, and implementation. We conducted a systematic review of published studies along with a search of grey literature to identify technologies that were able to provide cardiopulmonary monitoring, and could be used to detect OHCA. We searched MEDLINE, EMBASE, Web of Science, and Engineering Village using MeSH keywords. Following inclusion, we summarized trends and findings from included studies. Our searches retrieved 6945 unique publications between January, 1950 and May, 2023. 90 studies met the inclusion criteria. In addition, our grey literature search identified 26 commercial technologies. Among included technologies, 52% utilized electrocardiography (ECG) and 40% utilized photoplethysmography (PPG) sensors. Most wearable devices were multi-modal (59%), utilizing more than one sensor simultaneously. Most included devices were wearable technologies (84%), with chest patches (22%), wrist-worn devices (18%), and garments (14%) being the most prevalent. ECG and PPG sensors are heavily utilized in devices for cardiopulmonary monitoring that could be adapted to OHCA detection. Developers seeking to rapidly develop methods for OHCA detection should focus on using ECG- and/or PPG-based multimodal systems as these are most prevalent in existing devices. However, novel sensor technology development could overcome limitations in existing sensors and could serve as potential additions to or replacements for ECG- and PPG-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Sensors integrated into clothing

References

  1. Tsao, C. W., A. W. Aday, Z. I. Almarzooq, A. Alonso, A. Z. Beaton, M. S. Bittencourt, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022. https://doi.org/10.1161/CIR.0000000000001052.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berdowski, J., R. A. Berg, J. G. P. Tijssen, and R. W. Koster. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 81(11):1479–1487, 2010.

    Article  PubMed  Google Scholar 

  3. Keller, S. P., and H. R. Halperin. Cardiac arrest: the changing incidence of ventricular fibrillation. Curr. Treat. Options Cardiovasc. Med. 17(7):29, 2015.

    Article  Google Scholar 

  4. Holmén, J., J. Herlitz, S. Ricksten, A. Strömsöe, E. Hagberg, C. Axelsson, et al. Shortening ambulance response time increases survival in out-of-hospital cardiac arrest. J. Am. Heart Assoc. 9(21):e017048, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brooks, S. C., R. H. Schmicker, S. Cheskes, J. Christenson, A. Craig, M. Daya, et al. Variability in the initiation of resuscitation attempts by emergency medical services personnel during out-of-hospital cardiac arrest. Resuscitation. 117:102–108, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yap, J., M. Haines, A. Nowroozpoor, R. Armour, A. Luongo, G. Sidhu, et al. Rationale for withholding professional resuscitation in emergency medical system-attended out-of-hospital cardiac arrest. Resuscitation. 170:201–206, 2022.

    Article  PubMed  Google Scholar 

  7. Yan, S., Y. Gan, N. Jiang, R. Wang, Y. Chen, Z. Luo, et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit. Care. 24(1):61, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oving, I., C. de Graaf, L. Karlsson, M. Jonsson, J. Kramer-Johansen, E. Berglund, et al. Occurrence of shockable rhythm in out-of-hospital cardiac arrest over time: a report from the COSTA group. Resuscitation. 151:67–74, 2020.

    Article  PubMed  Google Scholar 

  9. Nadkarni, V. M., G. L. Larkin, M. A. Peberdy, S. M. Carey, W. Kaye, M. E. Mancini, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 295(1):50–57, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen, L. W., W. Y. Kim, M. Chase, K. M. Berg, S. J. Mortensen, A. Moskowitz, et al. The prevalence and significance of abnormal vital signs prior to in-hospital cardiac arrest. Resuscitation. 98:112–117, 2016.

    Article  PubMed  Google Scholar 

  11. Attin, M., G. Feld, H. Lemus, K. Najarian, S. Shandilya, L. Wang, et al. Electrocardiogram characteristics prior to in-hospital cardiac arrest. J. Clin. Monit. Comput. 29(3):385–392, 2015.

    Article  PubMed  Google Scholar 

  12. Gilhooley, C., G. Burnhill, D. Gardiner, H. Vyas, and P. Davies. Oxygen saturation and haemodynamic changes prior to circulatory arrest: implications for transplantation and resuscitation. J. Intensive Care Soc. 20(1):27–33, 2019.

    Article  PubMed  Google Scholar 

  13. Hodgetts, T. J., G. Kenward, I. G. Vlachonikolis, S. Payne, and N. Castle. The identification of risk factors for cardiac arrest and formulation of activation criteria to alert a medical emergency team. Resuscitation. 54(2):125–131, 2002.

    Article  PubMed  Google Scholar 

  14. Sattar, Y., and L. Chhabra. Electrocardiogram. In: StatPearls. Treasure Island: StatPearls Publishing, 2023.

  15. Sieciński, S., P. S. Kostka, and E. J. Tkacz. Heart rate variability analysis on electrocardiograms, seismocardiograms and gyrocardiograms on healthy volunteers. Sensors (Basel). 20(16):4522, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Charlton, P. H., P. A. Kyriacou, J. Mant, V. Marozas, P. Chowienczyk, and J. Alastruey. Wearable photoplethysmography for cardiovascular monitoring. Proc. IEEE. 110(3):355–381, 2022.

    Article  CAS  Google Scholar 

  17. Perdue, K. L., A. Westerlund, S. A. McCormick, and C. A. Nelson. Extraction of heart rate from functional near-infrared spectroscopy in infants. J. Biomed. Opt. 19(6):067010, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mah, A. J., T. Nguyen, L. Ghazi Zadeh, A. Shadgan, K. Khaksari, M. Nourizadeh, et al. Optical Monitoring of breathing patterns and tissue oxygenation: a potential application in COVID-19 screening and monitoring. Sensors (Basel). 22(19):7274, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scheeren, T. W. L., P. Schober, and L. A. Schwarte. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J. Clin. Monit. Comput. 26(4):279–287, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Filippeschi, A., N. Schmitz, M. Miezal, G. Bleser, E. Ruffaldi, and D. Stricker. Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors (Basel). 17(6):1257, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kang, Y. J., H. M. Arafa, J. Y. Yoo, C. Kantarcigil, J. T. Kim, H. Jeong, et al. Soft skin-interfaced mechano-acoustic sensors for real-time monitoring and patient feedback on respiratory and swallowing biomechanics. npj Digit. Med. 5(1):1–13, 2022.

    Article  Google Scholar 

  22. MacRae, B. A., S. Annaheim, C. M. Spengler, and R. M. Rossi. Skin temperature measurement using contact thermometry: a systematic review of setup variables and their effects on measured values. Front. Physiol. 2018. https://doi.org/10.3389/fphys.2018.00029.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wearable Technology Applications in Healthcare: A Literature Review | HIMSS. https://www.himss.org/resources/wearable-technology-applications-healthcare-literature-review. Accessed 22 Feb 2023.

  24. Sana, F., E. M. Isselbacher, J. P. Singh, E. Kevin Heist, B. Pathik, and A. A. Armoundas. Wearable devices for ambulatory cardiac monitoring JACC state-of-the-art review. J. Am. Coll. Cardiol. 2020. https://doi.org/10.1016/j.jacc.2020.01.046.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wearables sales worldwide by region 2015–2022 | Statista. https://www.statista.com/statistics/490231/wearable-devices-worldwide-by-region/. Accessed 22 Feb 2023.

  26. Statista. Wearable sales by vendor 2014–2021. https://www.statista.com/statistics/515634/wearables-shipments-worldwide-by-vendor/. Accessed 21 Feb 2023.

  27. Hutton, J., S. Lingawi, J. H. Puyat, C. Kuo, B. Shadgan, J. Christenson, et al. Sensor technologies to detect out-of-hospital cardiac arrest: a systematic review of diagnostic test performance. Resuscitation Plus. 11:100277, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Covidence - Better systematic review management. https://www.covidence.org/. Accessed 22 Feb 2023.

  29. Hewgill, B., R. S. McGinnis, and J. Frolik. A modular open source health monitoring garment. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp. 4510–4513.

  30. Anliker, U., J. A. Ward, P. Lukowicz, G. Troster, F. Dolveck, M. Baer, et al. AMON: a wearable multiparameter medical monitoring and alert system. IEEE Trans. Inform. Technol. Biomed. 8(4):415–427, 2004.

    Article  Google Scholar 

  31. Mundt, C. W., K. N. Montgomery, U. E. Udoh, V. N. Barker, G. C. Thonier, A. M. Tellier, et al. A Multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Trans. Inform. Technol. Biomed. 9(3):382–391, 2005.

    Article  Google Scholar 

  32. Da He, D., E. S. Winokur, and C. G. Sodini. An ear-worn vital signs monitor. IEEE Trans. Biomed. Eng. 62(11):2547–2552, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  33. He, D. D., E. S. Winokur, and C. G. Sodini. An ear-worn continuous ballistocardiogram (BCG) sensor for cardiovascular monitoring. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA: IEEE, 2012, pp. 5030–5033.

  34. Beck, C., and J. Georgiou. A wearable, multimodal, vitals acquisition unit for intelligent field triage. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 1530–1533.

  35. Xu, Z., Z. Fang, L. Du, Z. Zhao, X. Chen, D. Chen, et al. A wearable multi-parameter physiological system. In: Ubiquitous Information Technologies and Applications, edited by Y. S. Jeong, Y. H. Park, C. H. Hsu, J. J. Park, and H. Jong. Berlin: Springer, 2014, pp. 643–648. (Lecture Notes in Electrical Engineering).

  36. Zhou, C., C. Tu, J. Tian, J. Feng, Y. Gao, and X. Ye. A low power miniaturized monitoring system of six human physiological parameters based on wearable body sensor network. Sens. Rev. 35(2):210–218, 2015.

    Article  Google Scholar 

  37. Mishra, B., N. Arora, and Y. Vora. An ECG-PPG wearable device for real time detection of various arrhythmic cardiovascular diseases. In: 2019 9th International Symposium on Embedded Computing and System Design (ISED), 2019, pp. 1–5.

  38. Jain, M., N. Kumar, and S. Deb. A multi-signal acquisition system for preventive cardiology with cuff-less BP measurement capability. In: 2016 8th International Conference on Communication Systems and Networks (COMSNETS). Bangalore: IEEE; 2016, pp. 1–6.

  39. , S. V. Nathan, C. Zong, E. Akinbola, A. L. P. Aroul, and L. Philipose, et al. BioWatch—a wrist watch based signal acquisition system for physiological signals including blood pressure, vol. 2014. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, 2014.

  40. Winokur, E. S., He, D. D., and C. G. Sodini. A wearable vital signs monitor at the ear for continuous heart rate and Pulse Transit Time measurements. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, CA: IEEE, 2012, pp. 2724–2727.

  41. Ribeiro, D. M. D., M. F. M. Colunas, F. A. F. Marques, J. M. Fernandes, and J. P. S. Cunha. A real time, wearable ECG and continuous blood pressure monitoring system for first responders. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA: IEEE, 2011, pp. 6894–6898.

  42. Akbulut, F. P., Ö. Özgür, and İ. Çınar. e-Vital: a wrist-worn wearable sensor device for measuring vital parameters. In: 2019 Medical Technologies Congress (TIPTEKNO), 2019, pp. 1–4.

  43. Ferreira, A. G., D. Fernandes, S. Branco, J. L. Monteiro, J. Cabral, A. P. Catarino, et al. A smart wearable system for sudden infant death syndrome monitoring. In: 2016 IEEE International Conference on Industrial Technology (ICIT). Taipei: IEEE, 2016, pp. 1920–1925.

  44. Tao, X., T. H. Huang, C. L. Shen, Y. C. Ko, G. T. Jou, and V. Koncar. Bluetooth low energy-based washable wearable activity motion and electrocardiogram textronic monitoring and communicating system. Adv. Mater. Technol. 3(10):1700309, 2018.

    Article  Google Scholar 

  45. Di Rienzo, M., F. Rizzo, P. Meriggi, B. Bordoni, G. Brambilla, M. Ferratini, et al. Applications of a Textile-Based Wearable System in clinics, exercise and under gravitational stress. In: 2006 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, 2006, pp. 8–10.

  46. Yamamoto, D., S. Nakata, K. Kanao, T. Arie, S. Akita, and K. Takei. A Planar, Multisensing wearable health monitoring device integrated with acceleration, temperature, and electrocardiogram sensors. Adv. Mater. Technol. 2(7):1700057, 2017.

    Article  Google Scholar 

  47. Smith, M., R. Withnall, S. Anastasova, B. Gil-Rosa, J. Blackadder-Coward, and N. Taylor. Developing a multimodal biosensor for remote physiological monitoring. BMJ Mil. Health. 169(2):170–175, 2023.

    Article  PubMed  Google Scholar 

  48. Preejith, S. P., R. Dhinesh, J. Joseph, and M. Sivaprakasam. Wearable ECG platform for continuous cardiac monitoring. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 623–626.

  49. Bifulco, P., M. Cesarelli, A. Fratini, M. Ruffo, G. Pasquariello, and G. Gargiulo. A wearable device for recording of biopotentials and body movements. In: 2011 IEEE International Symposium on Medical Measurements and Applications. Bari, Italy: IEEE, 2011, pp. 469–472.

  50. Chiu, C. C., T. W. Shyr, H. C. Chu, Y. C. Chung, and C. Y. Lan. A wearable e-health system with multi-functional physiological measurement. In: World Congress on Medical Physics and Biomedical Engineering 2006, edited by R. Magjarevic, and J. H. Nagel. Berlin: Springer; 2007, pp. 429–432. (IFMBE Proceedings).

  51. Luo, Y., K. H. Teng, Y. Li, W. Mao, Y. Lian, and C. H. Heng. A 74- μ W 11-Mb/s wireless vital signs monitoring SoC for three-lead ECG, respiration rate, and body temperature. IEEE Trans. Biomed. Circuits Syst. 13(5):907–917, 2019.

    Article  PubMed  Google Scholar 

  52. Sun, F., Z. Zhao, Z. Fang, Y. Shi, X. Chen, and Y. Xuan. A design of a Band-Aid like health monitoring node for body sensor network. In: Proceedings of 2012 International Conference on Measurement, Information and Control.

  53. He, D. D., E. S. Winokur, and C. G. Sodini. A continuous, wearable, and wireless heart monitor using head ballistocardiogram (BCG) and head electrocardiogram (ECG). In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston, MA: IEEE, 2011, pp. 4729–4732.

  54. Wang, L., W. Dou, J. Chen, K. Lu, F. Zhang, M. Abdulaziz, et al. A CNT-PDMS wearable device for simultaneous measurement of wrist pulse pressure and cardiac electrical activity. Mater. Sci. Eng. C. 117:111345, 2020.

    Article  Google Scholar 

  55. Lanata, A., E. P. Scilingo, and D. De Rossi. A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans. Inform. Technol. Biomed. 14(3):817–825, 2010.

    Article  Google Scholar 

  56. Pandian, P. S., and M. G. Srinivasa. A ZigBee-wireless wearable remote physiological monitoring system. In: 2016 International Conference on Signal Processing and Communication (ICSC), 2016, pp. 407–12.

  57. Yun, S. O., M. K. Lee, K. G. Lee, J. Yi, S. J. Shin, M. Yang, et al. An integrated and wearable healthcare-on-a-patch for wireless monitoring system. In: 2015 IEEE SENSORS, 2015, pp. 1–4.

  58. Hashimoto, Y., R. Sato, K. Takagahara, T. Ishihara, K. Watanabe, and H. Togo. Validation of wearable device consisting of a smart shirt with built-in bioelectrodes and a wireless transmitter for heart rate monitoring in light to moderate physical work. Sensors. 22(23):9241, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Murali, S., F. Rincon, and D. Atienza. A wearable device for physical and emotional health monitoring. In: 2015 Computing in Cardiology Conference (CinC), 2015, pp. 121–124.

  60. Ackermans, P. A. J., T. A. Solosko, E. C. Spencer, S. E. Gehman, K. Nammi, J. Engel, et al. A user-friendly integrated monitor-adhesive patch for long-term ambulatory electrocardiogram monitoring. J. Electrocardiol. 45(2):148–153, 2012.

    Article  PubMed  Google Scholar 

  61. Welch, J., F. Guilak, and S. D. Baker A wireless ECG smart sensor for broad application in life threatening event detection. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, CA: IEEE, 2004, pp. 3447–3449.

  62. Shen, Q., J. Li, C. Cui, X. Wang, H. Gao, C. Liu, et al. A wearable real-time telemonitoring electrocardiogram device compared with traditional Holter monitoring. J. Biomed. Res. 35(3):238–246, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang, I. J., L. D. Liao, Y. T. Wang, C. Y. Chen, B. S. Lin, S. W. Lu, et al. A wearable mobile electrocardiogram measurement device with novel dry polymer-based electrodes, 2010, pp. 379–384.

  64. Lee, S. P., G. Ha, D. E. Wright, Y. Ma, E. Sen-Gupta, N. R. Haubrich, et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. npj Digit. Med. 1(1):1–8, 2018.

    Article  Google Scholar 

  65. Sun, F., C. Yi, W. Li, and Y. Li. A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing. Comput. Ind. 92–93:1–11, 2017.

    Article  Google Scholar 

  66. Steinberg, C., F. Philippon, M. Sanchez, P. Fortier-Poisson, G. O’Hara, F. Molin, et al. A novel wearable device for continuous ambulatory ECG recording: proof of concept and assessment of signal quality. Biosensors. 9(1):17, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zompanti, A., A. Sabatini, S. Grasso, G. Pennazza, G. Ferri, G. Barile, et al. Development and test of a portable ECG device with dry capacitive electrodes and driven right leg circuit. Sensors. 21(8):2777, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathias, D. N., S. I. Kim, J. S. Park, and Y. H. Joung. Real time ECG monitoring through a wearable smart T-shirt. Trans. Electr. Electron. Mater. 16(1):16–19, 2015.

    Article  Google Scholar 

  69. Fensli, R., E. Gunnarson, and O. Hejlesen. A wireless ECG system for continuous event recording and communication to a clinical alarm station. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Francisco, CA: IEEE, 2004, pp. 2208–2211.

  70. Bose, S., and M. L. Johnston. A Batteryless motion-adaptive heartbeat detection system-on-chip powered by human body heat. IEEE J. Solid-State Circuits. 55(11):12, 2020.

    Article  Google Scholar 

  71. Manas, M., A. Sinha, S. Sharma, and M. R. Mahboob. A novel approach for IoT based wearable health monitoring and messaging system. J Ambient Intell Human Comput. 10(7):2817–2828, 2019.

    Article  Google Scholar 

  72. Wang, C. Z., and Y. P. Zheng. Home-telecare of the elderly living alone using an new designed ear-wearable sensor. In: 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008, pp. 71–74.

  73. Kim, S. H., D. W. Ryoo, and C. Bae. U-healthcare system using smart headband. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2008, pp. 1557–1560.

  74. Raj, A. A., K. A. Karthik, S. Sachin, M. Sanchana, and M. Ganesan. A wearable device to detect blood volume change. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), 2019, pp. 379–381.

  75. Valliappan, Sp., B. P. R. Mohan, and S. R. Kumar Design of low-cost, wearable remote health monitoring and alert system for elderly heart patients. In: 2017 International Conference on IoT and Application (ICIOT), 2017, pp. 1–7.

  76. Valenti, S., G. Volpes, A. Parisi, D. Peri, J. Lee, L. Faes, et al. Wearable multisensor ring-shaped probe for assessing stress and blood oxygenation: design and preliminary measurements. Biosensors. 13(4):460, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Solberg, F. S., S. Kohtala, H. Vestad, and M. Steinert. A combined photoplethysmography and force sensor prototype for improved pulse waveform analysis. In: 2019 IEEE SENSORS. Montreal, QC, Canada: IEEE, 2019, pp. 1–4.

  78. Wu, T., J. M. Redoute, and M. R. Yuce. A wearable wireless medical sensor network system towards internet-of-patients. In: 2018 IEEE SENSORS. New Delhi: IEEE, 2018, pp. 1–3.

  79. Marzorati, D., D. Bovio, C. Salito, L. Mainardi, and P. Cerveri. Chest wearable apparatus for cuffless continuous blood pressure measurements based on PPG and PCG signals. IEEE Access. 8:55424–55437, 2020.

    Article  Google Scholar 

  80. Krizea, M., J. Gialelis, A. Kladas, G. Theodorou, G. Protopsaltis, and S. Koubias. Accurate detection of heart rate and blood oxygen saturation in reflective photoplethysmography. In: 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2020, pp. 1–4.

  81. Blanos, P., S. Hu, D. Mulvaney, and S. Alharbi. An applicable approach for extracting human heart rate and oxygen saturation during physical movements using a multi-wavelength illumination optoelectronic sensor system. In: Design and Quality for Biomedical Technologies XI, edited by R. Raghavachari, R. Liang, and T. J. Pfefer. San Francisco: SPIE, 2018, p. 27.

  82. Hoilett, O. S., A. M. Twibell, R. Srivastava, and J. C. Linnes. Kick LL: A smartwatch for monitoring respiration and heart rate using photoplethysmography. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2018:3821–3824, 2018.

    PubMed Central  Google Scholar 

  83. Wang, L., B. Lo, and G. Z. Yang. Reflective photoplethysmograph earpiece sensor for ubiquitous heart rate monitoring. In: 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), edited by S. Leonhardt, T. Falck, and P. Mähönen. Berlin: Springer, 2007, pp. 179–83. (IFMBE Proceedings).

  84. Chang, R. S., T. Kim, and S. L. Peng (eds.). A Driver’s Physiological Monitoring System Based on a Wearable PPG Sensor and A Smartphone. Communications in Computer and Information Science, Vol. 223, Berlin: Springer, 2011.

    Google Scholar 

  85. Ballaji, H. K., R. Correia, S. Korposh, B. R. Hayes-Gill, F. U. Hernandez, B. Salisbury, et al. A textile sleeve for monitoring oxygen saturation using multichannel optical fibre photoplethysmography. Sensors. 20(22):6568, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoang Long, N. M., J. J. Kim, and W. Y. Chung. A prototype wristwatch device for monitoring vital signs using multi-wavelength photoplethysmography sensors. In: Intelligent Human Computer Interaction, edited by M. Singh, D. K. Kang, J. H. Lee, U. S. Tiwary, D. Singh, and W. Y. Chung. Cham: Springer, 2021, pp. 312–318. (Lecture Notes in Computer Science).

  87. Quazi, M. T., and S. C. Mukhopadhyay. Continuous monitoring of physiological parameters using smart sensors. In: 2011 Fifth International Conference on Sensing Technology, 2011, pp. 464–469.

  88. Rahman, M., and B. I. Morshed. Estimation of respiration rate using an inertial measurement unit placed on thorax-abdomen. In: 2021 IEEE International Conference on Electro Information Technology (EIT), 2021, pp. 1–5.

  89. De Fazio, R., M. R. Greco, M. De Vittorio, and P. Visconti. A differential inertial wearable device for breathing parameter detection: hardware and firmware development, experimental characterization. Sensors. 22(24):9953, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Pitts, D. G., M. K. Patel, P. O. Lang, A. J. Sinclair, and R. Aspinall. A respiratory monitoring device based on clavicular motion. Physiol. Meas. 34(8):N51-61, 2013.

    Article  CAS  PubMed  Google Scholar 

  91. Chang, E., C. K. Cheng, A. Gupta, P. H. Hsu, P. Y. Hsu, and H. L. Liu, et al. Cuff-less blood pressure monitoring with a 3-axis accelerometer. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 6834–6837.

  92. Bravo, G., J. M. Silva, S. A. Noriega, E. A. Martínez, F. J. Enríquez, and E. Sifuentes. A power-efficient sensing approach for pulse wave palpation-based heart rate measurement. Sensors. 21(22):7549, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sharma, P., S. A. Imtiaz, and E. Rodriguez-Villegas. Acoustic sensing as a novel wearable approach for cardiac monitoring at the wrist. Sci. Rep. 9(1):20079, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qiu, C., F. Wu, W. Han, and M. R. Yuce. A wearable bioimpedance chest patch for real-time ambulatory respiratory monitoring. IEEE Trans. Biomed. Eng. 69(9):2970–2981, 2022.

    Article  PubMed  Google Scholar 

  95. Huynh, T. H., R. Jafari, and W. Y. Chung. A robust bioimpedance structure for smartwatch-based blood pressure monitoring. Sensors (Basel). 18(7):2095, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Qiu, C., and M. R. Yuce. A wearable bioimpedance chest patch for IoHT-connected respiration monitoring. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 6924–6927.

  97. Issatayeva, A., A. Beisenova, D. Tosi, and C. Molardi. Fiber-optic based smart textiles for real-time monitoring of breathing rate. Sensors. 20(12):3408, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lo Presti, D., C. Massaroni, P. Saccomandi, M. A. Caponero, D. Formica, and E. Schena. A wearable textile for respiratory monitoring: feasibility assessment and analysis of sensors position on system response. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Seogwipo: IEEE, 2017, pp. 4423–4426.

  99. Jha, C. K., O. Sinha, and A. L. Chakraborty. A fiber Bragg grating sensor-based wearable system to detect the pre-Dicrotic and Dicrotic notch in the arterial pulse pressure waveform. In: 2019 IEEE 16th India Council International Conference (INDICON). Rajkot: IEEE, 2019, pp. 1–4.

  100. Zhang, H., J. Zhang, Z. Hu, L. Quan, L. Shi, J. Chen, et al. Waist-wearable wireless respiration sensor based on triboelectric effect. Nano Energy. 59:75–83, 2019.

    Article  CAS  Google Scholar 

  101. Al-Halhouli, A., L. Al-Ghussain, S. El Bouri, H. Liu, and D. Zheng. Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different measurements locations. J. Clin. Monit. Comput. 35(3):453–462, 2021.

    Article  PubMed  Google Scholar 

  102. Arzbaecher, R., J. Jenkins, M. Burke, Z. Song, and M. Garrett. Database testing of a subcutaneous monitor with wireless alarm. J. Electrocardiol. 39(4):S50–S53, 2006.

    Article  PubMed  Google Scholar 

  103. Nabutovsky, Y., T. Pavek, and R. Turcott. Chronic performance of a subcutaneous hemodynamic sensor. Pacing Clin. Electrophysiol. 35(8):919–926, 2012.

    Article  PubMed  Google Scholar 

  104. Theodor, M., D. Ruh, S. Subramanian, K. Förster, C. Heilmann, F. Beyersdorf, et al. Implantable pulse oximetry on subcutaneous tissue. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 2089–2092.

  105. Cheung, A., L. Tu, N. Manouchehri, K. T. Kim, K. So, M. Webster, et al. Using near-infrared spectroscopy to monitor spinal cord oxygenation in the injured spinal cord. In: Optical Diagnostics and Sensing XX: Toward Point-of-Care Diagnostics, edited by G. L. Coté, et al., . San Francisco: SPIE, 2020, p. 8.

    Chapter  Google Scholar 

  106. Brancato, L., T. Weydts, W. Oosterlinck, P. Herijgers, and R. Puers. Packaging of implantable accelerometers to monitor epicardial and endocardial wall motion. Biomed. Microdevices. 19(3):52, 2017.

    Article  PubMed  Google Scholar 

  107. Brancato, L., T. Weydts, W. Oosterlinck, P. Herijgers, and R. Puers. Biocompatible packaging of an epicardial accelerometer for real-time assessment of cardiac motion. Procedia Eng. 168:80–83, 2016.

    Article  CAS  Google Scholar 

  108. Theodor, M., J. Fiala, D. Ruh, K. Förster, C. Heilmann, F. Beyersdorf, et al. Implantable accelerometer for determination of blood pressure. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013, pp. 1659–1662.

  109. Chen, Q., X. Jiang, X. Liu, C. Lu, L. Wang, and W. Chen. Non-contact heart rate monitoring in neonatal intensive care unit using RGB camera. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp. 5822–5825.

  110. Lee, Y. C., A. Syakura, M. A. Khalil, C. H. Wu, Y. F. Ding, and C. W. Wang. A real-time camera-based adaptive breathing monitoring system. Med. Biol. Eng. Comput. 59(6):1285–1298, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fang, C. Y., H. H. Hsieh, and S. W. Chen. A vision-based infant respiratory frequency detection system. In: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 2015, pp. 1–8.

  112. Jagadev, P., and L. I. Giri. Human respiration monitoring using infrared thermography and artificial intelligence. Biomed. Phys. Eng. Express. 6(3):035007, 2020.

    Article  PubMed  Google Scholar 

  113. Eastwood-Sutherland, C., K. Lim, T. J. Gale, K. I. Wheeler, and P. A. Dargaville. Detection of respiratory activity in newborn infants using a noncontact vision-based monitor. Pediatr. Pulmonol. 58(6):1753–1760, 2023.

    Article  PubMed  Google Scholar 

  114. Werthammer, J., J. Krasner, J. DiBenedetto, and A. R. Stark. Apnea monitoring by acoustic detection of airflow. Pediatrics. 71(1):53–55, 1983.

    Article  CAS  PubMed  Google Scholar 

  115. Postolache, O., P. Silva Girão, G. Postolache, and J. Mendes. Cardio-respiratory and daily activity monitor based on FMCW Doppler radar embedded in a wheelchair. In: Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, vol. 2011, 2011.

  116. Suzuki, S., T. Matsui, K. Sugawara, T. Asao, and K. Kotani. An approach to remote monitoring of heart rate variability (HRV) using microwave radar during a calculation task. J. Physiol. Anthropol. 30(6):241–249, 2011.

    Article  PubMed  Google Scholar 

  117. Desjardins, C. L., L. T. Antonelli, and E. Soares. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer. In: San Jose, CA, edited by T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, G. E. Cohn, and R. Raghavachari, 2007, p. 64301C. https://doi.org/10.1117/12.701139.

  118. Beattie, Z. T., C. C. Hagen, M. Pavel, and T. L. Hayes. Classification of breathing events using load cells under the bed. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 3921–3924.

  119. www.preventicesolutions.com. BodyGuardian Remote Cardiac Monitors - Physicians - Preventice. https://www.preventicesolutions.com/us/en/healthcare-professionals.html. Accessed 13 Mar 2023.

  120. Cardiac Insight. Cardea SOLO ECG System. https://www.cardiacinsightinc.com/cardea-solo-2/. Accessed 7 Feb 2022.

  121. How Zio works | iRhythm. https://www.irhythmtech.com/patients/how-it-works. Accessed 13 Mar 2023.

  122. MediBioSense. VitalPatch. MediBioSense. 2018. https://www.medibiosense.com/vitalpatch/. Accessed 13 Mar 2023.

  123. Vivalink. Remote Monitoring Systems & Technology for Healthcare - Vivalink. https://www.vivalink.com. Accessed 8 Aug 2022.

  124. Smart Wearable ECG EKG Monitor - QardioCore. Qardio. https://www.qardio.com/qardiocore-wearable-ecg-ekg-monitor-iphone/. Accessed 13 Mar 2023.

  125. OMRON Healthcare. Blood Pressure Watch | OMRON HeartGuide Wrist BP Monitor. https://omronhealthcare.com/products/heartguide-wearable-blood-pressure-monitor-bp8000m/. Accessed 13 Mar 2023.

  126. PMD Solutions. Product. https://www.pmd-solutions.com/product/. Accessed 13 Mar 2023.

  127. Respiratory Monitoring Device - Strados Labs. https://stradoslabs.com/respiratory-monitoring-devices/. Accessed 13 Mar 2023.

  128. Embrace2 Seizure Monitoring | Smarter Epilepsy Management | Embrace Watch | Empatica. https://www.empatica.com/embrace2/. Accessed 13 Mar 2023.

  129. Empatica. EmbracePlus | The world’s most advanced smartwatch for continuous health monitoring. https://www.empatica.com/embraceplus. Accessed 15 Nov 2022.

  130. Biosensor BX100 | Philips. https://www.philips.ca/healthcare/product/HC989803203011/biosensor-bx100-wearable-remote-measurement-device. Accessed 13 Mar 2023.

  131. KardiaMobile EKG Monitor - Instant EKG on Your Phone | AliveCor – AliveCor, Inc. https://store.kardia.com/products/kardiamobile. Accessed 13 Mar 2023.

  132. BioStamp nPoint®. https://medigy.com//offering/biostamp-npoint-r/. Accessed 13 Mar 2023.

  133. Hospital Monitoring. Connected Care. https://www.tsc-group.com/connected-care/solutions/hospital-monitoring/. Accessed 13 Mar 2023.

  134. Spire Health | Remote Patient Monitoring. https://www.spirehealth.com/. Accessed 13 Mar 2023.

  135. Contact-Free, Continuous Monitoring, Powered by EarlySense. https://www.hillrom.ca/en/products/contact-free-continuous-monitoring/. Accessed 13 Mar 2023.

  136. Fitbit Official Site for Activity Trackers & More. https://www.fitbit.com/global/en-ca/home. Accessed 13 Mar 2023.

  137. Apple (Canada). Watch. https://www.apple.com/ca/watch/. Accessed 13 Mar 2023.

  138. Garmin | Canada. https://www.garmin.com/en-CA/. Accessed 13 Mar 2023.

  139. Samsung ca. Buy Galaxy Watch 5 | Price & Deals | Samsung Canada. https://www.samsung.com/ca/watches/galaxy-watch5/buy/. Accessed 13 Mar 2023.

  140. Wearable Medical Heart Rate Monitor Watch - CardiacSense. https://www.cardiacsense.com/heart-rate-monitor-watch/. Accessed 13 Mar 2023.

  141. Oura Ring. Oura Ring: Accurate Health Information Accessible to Everyone. https://ouraring.com. Accessed 13 Mar 2023.

  142. Hexoskin Smart Shirts - Cardiac, Respiratory, Sleep & Activity Metrics. https://www.hexoskin.com/. Accessed 13 Mar 2023.

  143. Vitls. Vitls | Monitor Vitals 24/7. https://www.vitlsinc.com. Accessed 24 June 2023.

  144. Neteera | Simple and accurate contactless monitoring. https://neteera.com/. Accessed 21 June 2023.

  145. Respiree. https://www.respiree.com/. Accessed 24 June 2023.

  146. Cardiovascular diseases affect nearly half of American adults, statistics show | American Heart Association. https://www.heart.org/en/news/2019/01/31/cardiovascular-diseases-affect-nearly-half-of-american-adults-statistics-show. Accessed 23 June 2023.

  147. Xintarakou, A., V. Sousonis, D. Asvestas, P. E. Vardas, and S. Tzeis. Remote cardiac rhythm monitoring in the era of smart wearables: present assets and future perspectives. Front. Cardiovasc. Med. 2022. https://doi.org/10.3389/fcvm.2022.853614.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bayoumy, K., M. Gaber, A. Elshafeey, O. Mhaimeed, E. H. Dineen, F. A. Marvel, et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat. Rev. Cardiol. 18(8):581–599, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baig, M. M., H. Gholamhosseini, and M. J. Connolly. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults. Med. Biol. Eng. Comput. 51(5):485–495, 2013.

    Article  PubMed  Google Scholar 

  150. Statista Infographics. 2018. Infographic: The Global Wearables Market Is All About the Wrist. https://www.statista.com/chart/3370/wearable-device-forecast. Accessed 25 May 2023.

  151. Pevnick, J. M., K. Birkeland, R. Zimmer, Y. Elad, and I. Kedan. Wearable technology for cardiology: an update and framework for the future. Trends Cardiovasc. Med. 28(2):144–150, 2018.

    Article  PubMed  Google Scholar 

  152. Mubarik, A., and A. M. Iqbal. Holter monitor. In: StatPearls. Treasure Island: StatPearls Publishing, 2023.

  153. Nichol, G., E. Thomas, C. W. Callaway, J. Hedges, J. L. Powell, T. P. Aufderheide, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA. 300(12):1423–1431, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Blok, S., M. A. Piek, I. I. Tulevski, G. A. Somsen, and M. M. Winter. The accuracy of heartbeat detection using photoplethysmography technology in cardiac patients. J. Electrocardiol. 67:148–157, 2021.

    Article  CAS  PubMed  Google Scholar 

  155. Scardulla, F., L. D’Acquisto, R. Colombarini, S. Hu, S. Pasta, and D. Bellavia. A study on the effect of contact pressure during physical activity on photoplethysmographic heart rate measurements. Sensors (Basel). 20(18):5052, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Devine, J. K., L. P. Schwartz, and S. R. Hursh. Technical, regulatory, economic, and trust issues preventing successful integration of sensors into the mainstream consumer wearables market. Sensors. 22(7):2731, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bent, B., B. A. Goldstein, W. A. Kibbe, and J. P. Dunn. Investigating sources of inaccuracy in wearable optical heart rate sensors. npj Digit. Med. 3(1):1–9, 2020.

    Article  Google Scholar 

  158. Drummond, C. K., J. J. Hsu, D. M. J. Phelan, R. D. Seshadri, and S. M. Emery. Chapter 31—Wearable technologies for cardiac monitoring. In: Advances in Cardiovascular Technology, edited by J. H. Karimov, K. Fukamachi, and M. Gillinov. Cambridge: Academic Press, 2022, pp. 475–488.

    Chapter  Google Scholar 

  159. Monti, G., F. Raheli, A. Recupero, and L. Tarricone. Elastic textile wristband for bioimpedance measurements. Sensors. 23(6):3351, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Darginavicius, L., J. Vencloviene, P. Dobozinskas, E. Vaitkaitiene, D. Vaitkaitis, A. Pranskunas, et al. AI-enabled public surveillance cameras for rapid emergency medical service activation in out-of-hospital cardiac arrests. Curr. Probl. Cardiol. 48(11):101915, 2023.

    Article  PubMed  Google Scholar 

  161. Park, J., A. J. Mah, T. Nguyen, S. Park, L. Ghazi Zadeh, B. Shadgan, et al. Modification of a conventional deep learning model to classify simulated breathing patterns: a step toward real-time monitoring of patients with respiratory infectious diseases. Sensors. 23(12):5592, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Cheung, A., L. Tu, A. Macnab, B. K. Kwon, and B. Shadgan. Detection of hypoxia by near-infrared spectroscopy and pulse oximetry: a comparative study. JBO. 27(7):077001, 2022.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Motti, V. G., and K. Caine. Users’ privacy concerns about wearables. In: Financial Cryptography and Data Security, edited by M. Brenner, N. Christin, B. Johnson, K. Rohloff. Berlin: Springer, 2015, pp. 231–244. (Lecture Notes in Computer Science).

  164. Turakhia, M. P., M. Desai, H. Hedlin, A. Rajmane, N. Talati, T. Ferris, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. Am. Heart J. 207:66–75, 2019.

    Article  PubMed  Google Scholar 

  165. Lubitz, S. A., A. Z. Faranesh, C. Selvaggi, S. J. Atlas, D. D. McManus, D. E. Singer, et al. Detection of atrial fibrillation in a large population using wearable devices: the Fitbit Heart Study. Circulation. 146(19):1415–1424, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Groome, R., P. Polgarova, and J. Martin. First report of a wearable fitness tracking device capturing a cardiac arrest. J. Mob. Technol. Med. 7(1):47–49, 2018.

    Article  Google Scholar 

  167. Rickard, J., S. Ahmed, M. Baruch, B. Klocman, D. O. Martin, and V. Menon. Utility of a novel watch-based pulse detection system to detect pulselessness in human subjects. Heart Rhythm. 8(12):1895–1899, 2011.

    Article  PubMed  Google Scholar 

  168. Raschdorf, K., A. Mohseni, K. Hogle, A. Cheung, K. So, N. Manouchehri, et al. Evaluation of transcutaneous near-infrared spectroscopy for early detection of cardiac arrest in an animal model. Sci. Rep. 13(1):4537, 2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Chan, J., T. Rea, S. Gollakota, and J. E. Sunshine. Contactless cardiac arrest detection using smart devices. npj Digit. Med. 2(1):1–8, 2019.

    Article  Google Scholar 

Download references

Funding

MK is funded by Mitacs and the Michael Smith Health Research BC, JH is funded by Mitacs, and the research team is funded by the UBC VPRI Research Excellence Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saud Lingawi.

Ethics declarations

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Associate Editor Ellen Kuhla oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Search Terms and Search Strategy

Appendix: Search Terms and Search Strategy

The search strategy is provided below. The search databases include MEDLINE, EMBASE, Web of Science, and Engineering Village. The search was restricted to articles in English within the date range of January 1, 1950 to May 19, 2023. Full-text case reports, clinical trials, and technical reports were included in the search.

Search Terms

The terms used in this search fell under four classifying categories: (1) terms for continuous monitoring and detection of physiological parameters, (2) terms for broad categories of sensors, (3) terms for the primary disease states associated with cardiac arrest, and (4) terms for cardiac arrest-associated physiological parameters. The exact search terms within each classifying category are listed below (Table 3).

Table 3 Literature search terms

When necessary, keywords were shortened and truncated with an asterisk (e.g. detect*) to retrieve unlimited suffix variations (e.g. detect, detecting, detectable, etc.). The search terms were combined according to the following strategy:

$$Category 1 AND \left[\left(Category 2\right) AND (Category 3 OR category 4)\right]$$

MEDLINE Example Search

On MEDLINE, all of the search terms used, with the exception of “prevent”, “detect”, “monitor”, “cardiac arrest”, and “implant” were Medical Subject Headings (MeSH). Broader MeSH were selected to encompass relevant subcategories when necessary. Below is a more detailed representation of this search strategy (Table 4).

Table 4 MEDLINE example search strategy

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lingawi, S., Hutton, J., Khalili, M. et al. Cardiorespiratory Sensors and Their Implications for Out-of-Hospital Cardiac Arrest Detection: A Systematic Review. Ann Biomed Eng 52, 1136–1158 (2024). https://doi.org/10.1007/s10439-024-03442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-024-03442-y

Keywords

Navigation