Skip to main content
Log in

Enhanced 4D Flow MRI-Based CFD with Adaptive Mesh Refinement for Flow Dynamics Assessment in Coarctation of the Aorta

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

4D Flow MRI is a diagnostic tool that can visualize and quantify patient-specific hemodynamics and help interventionalists optimize treatment strategies for repairing coarctation of the aorta (COA). Despite recent developments in 4D Flow MRI, shortcomings include phase-offset errors, limited spatiotemporal resolution, aliasing, inaccuracies due to slow aneurysmal flows, and distortion of images due to metallic artifact from vascular stents. To address these limitations, we developed a framework utilizing Computational Fluid Dynamics (CFD) with Adaptive Mesh Refinement (AMR) that enhances 4D Flow MRI visualization/quantification. We applied this framework to five pediatric patients with COA, providing in-vivo and in-silico datasets, pre- and post-intervention. These two data sets were compared and showed that CFD flow rates were within 9.6% of 4D Flow MRI, which is within a clinically acceptable range. CFD simulated slow aneurysmal flow, which MRI failed to capture due to high relative velocity encoding (Venc). CFD successfully predicted in-stent blood flow, which was not visible in the in-vivo data due to susceptibility artifact. AMR improved spatial resolution by factors of 101 to 103 and temporal resolution four-fold. This computational framework has strong potential to optimize visualization/quantification of aneurysmal and in-stent flows, improve spatiotemporal resolution, and assess hemodynamic efficiency post-COA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

COA:

Coarctation of the aorta

CFD:

Computational fluid dynamics

AMR:

Adaptive mesh refinement

Venc :

Velocity encoding

PC-MRA:

Phase-contrast magnetic resonance angiography

CE-MRA:

Contrast-enhanced magnetic resonance angiography

CTA:

Computed tomography angiography

BC:

Boundary condition

\({q}^{\text{BCA}}\) :

Fractional volumetric flow rate in brachiocephalic artery

\({q}^{\text{LCC}}\) :

Fractional volumetric flow rate in left common carotid artery

\({q}^{\text{LS}}\) :

Fractional volumetric flow rate in left subclavian artery

\({q}^{\text{Desc}}\) :

Fractional volumetric flow rate in descending thoracic aorta

\(\Delta q\) :

Maximum absolute difference in fractional volumetric flow rates from 4D flow MRI and CFD among outlets

References

  1. Abbruzzese, P. A., and E. Aidala. Aortic coarctation: an overview. J. Cardiovasc. Med. 8(2):123–128, 2007

    Article  Google Scholar 

  2. Allen, B. D., P. van Ooij, A. J. Barker, M. Carr, M. Gabbour, S. Schnell, K. B. Jarvis, J. C. Carr, M. Markl, C. Rigsby, and J. D. Robinson. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve. J. Magn. Reson. Imaging. 42:954–963, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  3. Backer, C. L., C. Mavroudis, E. A. Zias, Z. Amin, and T. J. Weigel. Repair of coarctation with resection and extended end-to-end anastomosis. Ann. Thorac. Surg. 66:1365–1370, 1998

    Article  CAS  PubMed  Google Scholar 

  4. Bedford, K. W., and W. K. Yeo. Conjunctive filtering procedures in surface water flow and transport. In: Large Eddy Simulation of Complex Engineering and Geophysical Flows, edited by B. Galperin, and S. A. Orszag. Cambridge: Cambridge University Press, 1993, pp. 513–537

    Google Scholar 

  5. Bock, J., B. W. Kreher, J. Hennig, and M. Markl. Optimized pre-processing of time-resolved 2D and 3D phase contrast MRI data, 2007.

  6. Callahan, S., N. S. Singam, M. Kendrick, M. J. Negahdar, H. Wang, M. F. Stoddard, and A. A. Amini. Dual-Venc acquisition for 4D flow MRI in aortic stenosis with spiral readouts. J Magn Reson Imaging. 2019. https://doi.org/10.1002/jmri.27004

    Article  PubMed  PubMed Central  Google Scholar 

  7. Canniffe, C., P. Ou, K. Walsh, D. Bonnet, and D. Celermajer. Hypertension after repair of aortic coarctation: A systematic review. Int J Cardiol. 167(6):2456–2461, 2013

    Article  PubMed  Google Scholar 

  8. Desai, L., H. Stefek, H. Berhane, J. Robinson, C. Rigsby, and M. Markl. Four-dimensional flow magnetic resonance imaging for assessment of pediatric coarctation of the aorta. J. Magn. Reson. Imaging. 2021. https://doi.org/10.1002/JMRI.27802

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dyverfeldt, P., M. Bissell, A. J. Barker, A. F. Bolger, C.-J. Carlhäll, T. Ebbers, C. J. Francios, A. Frydrychowicz, J. Geiger, D. Giese, M. D. Hope, P. J. Kilner, S. Kozerke, S. Myerson, S. Neubauer, O. Wieben, and M. Markl. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 17:1–19, 2015

    Article  Google Scholar 

  10. Dyverfeldt, P., A. Sigfridsson, J. P. E. Kvitting, and T. Ebbers. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magnetic Resonance in Medicine. 56:850–858, 2006

    Article  PubMed  Google Scholar 

  11. Fathi, M. F., I. Perez-Raya, A. Baghaie, P. Berg, G. Janiga, A. Arzani, and R. M. D’Souza. Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets. Computer Methods and Programs in Biomedicine.197:105729, 2020

    Article  PubMed  Google Scholar 

  12. Feltes, T. F., E. Bacha, R. H. Beekman, J. P. Cheatham, J. A. Feinstein, A. S. Gomes, Z. M. Hijazi, F. F. Ing, M. de Moor, W. R. Morrow, C. E. Mullins, K. A. Taubert, and E. M. Zahn. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation. 123:2607–2652, 2011

    Article  PubMed  Google Scholar 

  13. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Computer Methods in Applied Mechanics and Engineering. 195:5685–5706, 2006

    Article  Google Scholar 

  14. Frydrychowicz, A., R. Arnold, D. Hirtler, C. Schlensak, A. F. Stalder, J. Hennig, M. Langer, and M. Markl. Multidirectional flow analysis by cardiovascular magnetic resonance in aneurysm development following repair of aortic coarctation. Journal of Cardiovascular Magnetic Resonance. 10:30, 2008

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frydrychowicz, A., M. Markl, D. Hirtler, A. Harloff, C. Schlensak, J. Geiger, B. Stiller, and R. Arnold. Aortic hemodynamics in patients with and without repair of aortic coarctation: In vivo analysis by 4D Flow-sensitive magnetic resonance imaging. Investigative Radiology. 46:317–325, 2011

    Article  PubMed  Google Scholar 

  16. Gan, C. T. J., J. W. Lankhaar, N. Westerhof, J. T. Marcus, A. Becker, J. W. R. Twisk, A. Boonstra, P. E. Postmus, and A. Vonk-Noordegraaf. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest. 132:1906–1912, 2007

    Article  PubMed  Google Scholar 

  17. Goubergrits, L., E. Riesenkampff, P. Yevtushenko, J. Schaller, U. Kertzscher, A. Hennemuth, F. Berger, S. Schubert, and T. Kuehne. MRI-based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta. J. Magn. Reson. Imaging. 41:909–916, 2015

    Article  PubMed  Google Scholar 

  18. Hope, M. D., A. K. Meadows, T. A. Hope, K. G. Ordovas, D. Saloner, G. P. Reddy, M. T. Alley, and C. B. Higgins. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J. Magn. Reson. Imaging. 31:711–718, 2010

    Article  PubMed  Google Scholar 

  19. Kaushal, S., C. L. Backer, J. N. Patel, S. K. Patel, B. L. Walker, T. J. Weigel, G. Randolph, D. Wax, and C. Mavroudis. Coarctation of the aorta: Midterm outcomes of resection with extended end-to-end anastomosis. Annals of Thoracic Surgery. 88:1932–1938, 2009

    Article  PubMed  Google Scholar 

  20. Koivistoinen, T., T. Kööbi, A. Jula, N. Hutri-kähönen, O. T. Raitakari, S. Majahalme, K. Kukkonen-harjula, T. Lehtimäki, A. Reunanen, J. Viikari, V. Turjanmaa, T. Nieminen, and M. Kähönen. Pulse wave velocity reference values in healthy adults aged 26–75 years. Clin. Physiol. Funct. Imaging. 27:191–196, 2007

    Article  CAS  PubMed  Google Scholar 

  21. Levine, G. N., A. S. Gomes, A. E. Arai, D. A. Bluemke, S. D. Flamm, E. Kanal, W. J. Manning, E. T. Martin, J. M. Smith, N. Wilke, and F. S. Shellock. Safety of magnetic resonance imaging in patients with cardiovascular devices: An American heart association scientific statement from the committee on diagnostic and interventional cardiac catheterization, council on clinical cardiology, and the council on cardiovascular radiology and intervention. Circulation. 116:2878–2891, 2007

    Article  PubMed  Google Scholar 

  22. Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. 4D flow MRI. J. Magn. Reson. Imaging. 36:1015–1036, 2012

    Article  PubMed  Google Scholar 

  23. Markl, M., P. J. Kilner, and T. Ebbers. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13(1):7, 2011

    Article  PubMed  PubMed Central  Google Scholar 

  24. Marsden, A. L., and M. Esmaily-Moghadam. Multiscale modeling of cardiovascular flows for clinical decision support. Appl. Mech. Rev. 67:030804, 2015

    Article  Google Scholar 

  25. Marsden, A. L., and J. A. Feinstein. Computational modeling and engineering in pediatric and congenital heart disease. Curr. Opin. Pediatr. 27(5):587–596, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  26. Menon, S., P. K. Yeung, and W. W. Kim. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput. Fluids. 25:165–180, 1996

    Article  Google Scholar 

  27. Min, J., D. Berman, L. Shaw, L. Mauri, B.-K. Koo, A. Erglis, J. Leipsic, A. Maehara, G. Mintz, B. Witzenbichler, D. C. Metzger, M. Rinaldi, E. Mazzaferri, P. Duffy, G. Weisz, T. Stuckey, B. Brodie, K. Xu, H. Parise, R. Mehran, and G. Stone. Fractional flow reserved derived from computed tomographic angiography (FFRCT) for intermediate severity coronary lesions: Results from the DeFACTO trial (Determination of fractional flow reserve by anatomic computed tomographic angiography) IVUS predictors of stent thrombosis: Results from the prospective, multicenter ADAPT-DES study. J. Am. Coll. Cardiol. 60:B6, 2012

    Article  Google Scholar 

  28. Minderhoud, S. C. S., N. van der Velde, J. J. Wentzel, R. J. van der Geest, M. Attrach, P. A. Wielopolski, R. P. J. Budde, W. A. Helbing, J. W. Roos-Hesselink, and A. Hirsch. The clinical impact of phase offset errors and different correction methods in cardiovascular magnetic resonance phase contrast imaging: a multi-scanner study. J. Cardiovasc. Magn. Reson. 22:1–13, 2020

    Article  Google Scholar 

  29. Mirramezani, M., and S. C. Shadden. A distributed lumped parameter model of blood flow. Annals of Biomedical Engineering. 48:2870–2886, 2020

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miyazaki, S., K. Itatani, T. Furusawa, T. Nishino, M. Sugiyama, Y. Takehara, and S. Yasukochi. Validation of numerical simulation methods in aortic arch using 4D Flow MRI. Heart and Vessels. 32:1032–1044, 2017

    Article  PubMed  Google Scholar 

  31. Nakazato, R., H. B. Park, D. S. Berman, H. Gransar, B. K. Koo, A. Erglis, F. Y. Lin, A. M. Dunning, M. J. Budoff, J. Malpeso, J. Leipsic, and J. K. Min. Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ. Cardiovasc. imaging. 6:881–889, 2013

    Article  PubMed  Google Scholar 

  32. Oliver, J. M., P. Gallego, A. Gonzalez, A. Aroca, M. Bret, and J. M. Mesa. Risk factors for aortic complications in adults with coarctation of the aorta. J. Am. Coll. Cardiol. 44:1641–1647, 2004

    Article  PubMed  Google Scholar 

  33. Ou, P., D. S. Celermajer, E. Mousseaux, A. Giron, Y. Aggoun, I. Szezepanski, D. Sidi, and D. Bonnet. Vascular remodeling after “successful” repair of coarctation impact of aortic arch geometry. J. Am. Coll. Cardiol. 49:883–890, 2007

    Article  PubMed  Google Scholar 

  34. Petersson, S., P. Dyverfeldt, R. Gårdhagen, M. Karlsson, and T. Ebbers. Simulation of phase contrast MRI of turbulent flow. Magn. Reson. Med. 64:1039–1046, 2010

    Article  PubMed  Google Scholar 

  35. Petersson, S., P. Dyverfeldt, A. Sigfridsson, J. Lantz, C. J. Carlhäll, and T. Ebbers. Quantification of turbulence and velocity in stenotic flow using spiral three-dimensional phase-contrast MRI. Magn. Reson. Med. 75:1249, 2016

    Article  PubMed  Google Scholar 

  36. Pewowaruk, R., L. Lamers, and A. Roldán-Alzate. Accelerated estimation of pulmonary artery stenosis pressure gradients with distributed lumped parameter modeling vs. 3D CFD with instantaneous adaptive mesh refinement: experimental validation in swine. Ann. Biomed. Eng. 2021. https://doi.org/10.1007/s10439-021-02780-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pewowaruk, R., Y. Li, D. Rowinski, and A. Roldán-Alzate. Solution adaptive refinement of cut-cell Cartesian meshes can improve FDA nozzle computational fluid dynamics efficiency. Int. J. Numer. Methods Biomed. Eng. 2021. https://doi.org/10.1002/cnm.3432

    Article  Google Scholar 

  38. Pewowaruk, R., and A. Roldán-Alzate. A distributed lumped parameter model of blood flow with fluid-structure interaction. Biomech. Model. Mechanobiol. 20:1659–1674, 2021

    Article  PubMed  Google Scholar 

  39. Raimund, E., et al. ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 35(2873–2926):2014, 2014

    Google Scholar 

  40. Rao, P. S. Coarctation of the aorta. Current cardiology reports. 7:425–434, 2005

    Article  PubMed  Google Scholar 

  41. Richards, K. J., P. K. Senecal, and E. Pomraning. CONVERGE, 2020.

  42. Roldán-Alzate, A., A. Frydrychowicz, E. Niespodzany, B. R. Landgraf, K. M. Johnson, O. Wieben, and S. B. Reeder. In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J. Magn. Reson. Imaging. 37:1100–1108, 2013

    Article  PubMed  Google Scholar 

  43. Sahni, O., K. E. Jansen, C. A. Taylor, and M. S. Shephard. Automated adaptive cardiovascular flow simulations. Engineering with Computers. 25:25–36, 2009

    Article  Google Scholar 

  44. Saxena, A. Recurrent coarctation: interventional techniques and results. World J. Pediatr. Congenit. Heart Surg. 6:257–265, 2015

    Article  PubMed  Google Scholar 

  45. Stein, P. D., and H. N. Sabbah. Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves. Circ. Res. 39:58–65, 1976

    Article  CAS  PubMed  Google Scholar 

  46. Stout, K. K., C. J. Daniels, J. A. Aboulhosn, B. Bozkurt, C. S. Broberg, J. M. Colman, S. R. Crumb, J. A. Dearani, S. Fuller, M. Gurvitz, P. Khairy, M. J. Landzberg, A. Saidi, A. M. Valente, and G. F. van Hare. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 139:e698–e800, 2019

    PubMed  Google Scholar 

  47. Taylor, C. A., T. A. Fonte, and J. K. Min. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61:2233–2241, 2013

    Article  PubMed  Google Scholar 

  48. Torok, R. D. Coarctation of the aorta: Management from infancy to adulthood. World J. Cardiol. 7:765, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yoshizawa, A., and K. Horiuti. A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54:2834–2839, 1985

    Article  Google Scholar 

  50. Zambrano, B. A., N. A. McLean, X. Zhao, J. le Tan, L. Zhong, C. A. Figueroa, L. C. Lee, and S. Baek. Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J. Biomech. 68:84–92, 2018

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the American Heart Association (Grant No. 19TPA34850066). GE Healthcare, which provides research support to the University of Wisconsin. This research was performed using the compute resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW-Madison, the Advanced Computing Initiative, the Wisconsin Alumni Research Foundation, the Wisconsin Institutes for Discovery, and the National Science Foundation, and is an active member of the OSG Consortium, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Labib Shahid.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, L., Rice, J., Berhane, H. et al. Enhanced 4D Flow MRI-Based CFD with Adaptive Mesh Refinement for Flow Dynamics Assessment in Coarctation of the Aorta. Ann Biomed Eng 50, 1001–1016 (2022). https://doi.org/10.1007/s10439-022-02980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-02980-7

Keywords

Navigation