Skip to main content
Log in

Matrix Deformation with Ectopic Cells Induced by Rotational Motion in Bioengineered Neural Tissues

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The brain’s extracellular matrix (ECM) is a dynamic protein-based scaffold within which neural networks can form, self-maintain, and re-model. When the brain incurs injuries, microscopic tissue tears and active ECM re-modelling give way to abnormal brain structure and function including the presence of ectopic cells. Post-mortem and neuroimaging data suggest that the brains of jet pilots and astronauts, who are exposed to rotational forces, accelerations, and microgravity, display brain anomalies which could be indicative of a mechanodisruptive pathology. Here we present a model of non-impact-based brain injury induced by matrix deformation following mechanical shaking. Using a bioengineered 3D neural tissue platform, we designed a repetitive shaking paradigm to simulate subtle rotational acceleration. Our results indicate shaking induced ectopic cell clustering that could be inhibited by physically restraining tissue movement. Imaging revealed that the collagen substrate surrounding cells was deformed following shaking. Applied to neonatal rat brains, shaking induced deformation of extracellular spaces within the cerebral cortices and reduced the number of cell bodies at higher accelerations. We hypothesize that ECM deformation may represent a more significant role in brain injury progression than previously assumed and that the present model system contributes to its understanding as a phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

rpm:

Revolutions per minute

DAPI:

4′,6-Diamidino-2-phenylindole

CA:

Calcein-AM

PI:

Propidium iodide

WBV:

Whole-body vibrations

References

  1. Alperin, N., A. M. Bagci, and S. H. Lee. Spaceflight-induced changes in white matter hyperintensity burden in astronauts. Neurology 89(21):2187–2191, 2017.

    PubMed  Google Scholar 

  2. Ananthanarayanan, B., Y. Kim, and S. Kumar. Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32(31):7913–7923, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arenas, J. P., and R. N. Margasahayam. Noise and vibration of spacecraft structures. Ingeniare. Revista chilena de ingeniería 14(3):251–264, 2006.

    Google Scholar 

  4. Cairns, D. M., K. Chwalek, Y. E. Moore, M. R. Kelley, R. D. Abbott, S. Moss, and D. L. Kaplan. Expandable and rapidly differentiating human induced neural stem cell lines for multiple tissue engineering applications. Stem Cell Rep. 7(3):557–570, 2016.

    CAS  Google Scholar 

  5. Cantley, W. L., C. Du, S. Lomoio, T. DePalma, E. Peirent, D. Kleinknecht, et al. Functional and sustainable 3D human neural network models from pluripotent stem cells. ACS Biomater. Sci. Eng. 4(12):4278–4288, 2018.

    CAS  Google Scholar 

  6. Chen, Y., and M. Ostoja-Starzewski. MRI-based finite element modeling of head trauma: spherically focusing shear waves. Acta Mech. 213(1–2):155–167, 2010.

    Google Scholar 

  7. Chwalek, K., M. D. Tang-Schomer, F. G. Omenetto, and D. L. Kaplan. In vitro bioengineered model of cortical brain tissue. Nat. Protoc. 10(9):1362, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Clayton, E. H., G. M. Genin, and P. V. Bayly. Transmission, attenuation and reflection of shear waves in the human brain. J. R. Soc. Interface 9(76):2899–2910, 2012.

    PubMed  PubMed Central  Google Scholar 

  9. Cullen, D. K., M. C. Lessing, and M. C. LaPlaca. Collagen-dependent neurite outgrowth and response to dynamic deformation in three-dimensional neuronal cultures. Ann. Biomed. Eng. 35(5):835–846, 2007.

    PubMed  Google Scholar 

  10. George, N., and H. M. Geller. Extracellular matrix and traumatic brain injury. J. Neurosci. Res. 96(4):573–588, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Giraudon, P., S. Buart, A. Bernard, N. Thomasset, and M. F. Belin. Extracellular matrix-remodeling metalloproteinases and infection of the central nervous system with retrovirus human T-lymphotropic virus type I (HTLV-I). Prog. Neurobiol. 49(2):169–184, 1996.

    CAS  PubMed  Google Scholar 

  12. Hayashi, T., Y. Kaneko, S. Yu, E. Bae, C. E. Stahl, T. Kawase, et al. Quantitative analyses of matrix metalloproteinase activity after traumatic brain injury in adult rats. Brain Res. 1280:172–177, 2009.

    CAS  PubMed  Google Scholar 

  13. Hirakawa, K., K. Hashizume, and T. Hayashi. Viscoelastic property of human brain-for the analysis of impact injury (author’s transl). No Shinkei 33(10):1057–1065, 1981.

    CAS  Google Scholar 

  14. Horner, P. J., and F. H. Gage. Regeneration in the adult and aging brain. Arch. Neurol. 59(11):1717–1720, 2002.

    PubMed  Google Scholar 

  15. Kartje-Tillotson, G., E. J. Neafsey, and A. J. Castro. Electrophysiological analysis of motor cortical plasticity after cortical lesions in newborn rats. Brain Res. 332(1):103–111, 1985.

    CAS  PubMed  Google Scholar 

  16. Kim, S. N., A. Jeibmann, K. Halama, H. T. Witte, M. Wälte, T. Matzat, et al. ECM stiffness regulates glial migration in Drosophila and mammalian glioma models. Development 141(16):3233–3242, 2014.

    CAS  PubMed  Google Scholar 

  17. Kiraly, M. A., and S. J. Kiraly. Traumatic brain injury and delayed sequelae: a review-traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia. Sci. World J. 7:1768–1776, 2007.

    Google Scholar 

  18. Laksari, K., L. C. Wu, M. Kurt, C. Kuo, and D. C. Camarillo. Resonance of human brain under head acceleration. J. R. Soc. Interface 12(108):20150331, 2015.

    PubMed  PubMed Central  Google Scholar 

  19. LaPlaca, M. C., and L. E. Thibault. Dynamic mechanical deformation of neurons triggers an acute calcium response and cell injury involving the N-methyl-D-aspartate glutamate receptor. J. Neurosci. Res. 52(2):220–229, 1998.

    CAS  PubMed  Google Scholar 

  20. Lee, J. K., V. Koppelmans, R. F. Riascos, K. M. Hasan, O. Pasternak, A. P. Mulavara, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA Neurol. 76(4):412–419, 2019.

    PubMed  PubMed Central  Google Scholar 

  21. Lim, D., J. Park, W. H. Choi, D. H. Bang, O. M. Jung, and S. Kang. Asymptomatic brain lesions in pilots: a comparative study with non-flying personnel using brain MRI. Aviat. Space Environ. Med. 83(9):865–871, 2012.

    CAS  PubMed  Google Scholar 

  22. Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1):144–152, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris, R. G., J. Inglis, J. A. Ainge, H. J. Olverman, J. Tulloch, Y. Dudai, and P. A. Kelly. Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50(3):479–489, 2006.

    CAS  PubMed  Google Scholar 

  24. Muir, J., D. P. Kiel, and C. T. Rubin. Safety and severity of accelerations delivered from whole body vibration exercise devices to standing adults. J. Sci. Med. Sport 16(6):526–531, 2013.

    PubMed  PubMed Central  Google Scholar 

  25. Oppenheimer, D. R. Microscopic lesions in the brain following head injury. J. Neurol. Neurosurg. Psychiatry 31(4):299, 1968.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Paolicelli, R. C., G. Bolasco, F. Pagani, L. Maggi, M. Scianni, P. Panzanelli, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458, 2011.

    CAS  PubMed  Google Scholar 

  27. Ribes, V., and J. Briscoe. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harbor Perspect. Biol. 1(2):a002014, 2009.

    Google Scholar 

  28. Rouleau, N., W. L. Cantley, V. Liaudanskaya, A. Berk, C. Du, W. Rusk, et al. A long-living bioengineered neural tissue platform to study neurodegeneration. Macromol. Biosci. 20:2000004, 2020.

    CAS  Google Scholar 

  29. Siesjö, B. K., and P. Siesjö. Mechanisms of secondary brain injury. Eur. J. Anaesthesiol. 13(3):247–268, 1996.

    PubMed  Google Scholar 

  30. Sosa, M. A. G., R. De Gasperi, A. J. Paulino, P. E. Pricop, M. C. Shaughness, E. Maudlin-Jeronimo, et al. Blast overpressure induces shear-related injuries in the brain of rats exposed to a mild traumatic brain injury. Acta Neuropathol. Commun. 1(1):51, 2013.

    PubMed  PubMed Central  Google Scholar 

  31. Spear, R. C., C. A. Keller, and T. H. Milby. Morbidity studies of workers exposed to whole body vibration. Arch. Environ. Health 31(3):141–145, 1976.

    CAS  PubMed  Google Scholar 

  32. Tang-Schomer, M. D., J. D. White, L. W. Tien, L. I. Schmitt, T. M. Valentin, D. J. Graziano, et al. Bioengineered functional brain-like cortical tissue. Proc. Natl. Acad. Sci. 111(38):13811–13816, 2014.

    CAS  PubMed  Google Scholar 

  33. Ulrich, T. A., E. M. de Juan Pardo, and S. Kumar. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69(10):4167–4174, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Urbán, N., and F. Guillemot. Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front. Cell. Neurosci. 8:396, 2014.

    PubMed  PubMed Central  Google Scholar 

  35. Wang, X., J. Jung, M. Asahi, W. Chwang, L. Russo, M. A. Moskowitz, et al. Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J. Neurosci. 20(18):7037–7042, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, C., X. Tong, and F. Yang. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Mol. Pharm. 11(7):2115–2125, 2014.

    CAS  PubMed  Google Scholar 

  37. Wang, L., Z. G. Zhang, R. L. Zhang, S. R. Gregg, A. Hozeska-Solgot, Y. LeTourneau, et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J. Neurosci. 26(22):5996–6003, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wardlaw, J. M., M. C. Valdés Hernández, and S. Muñoz-Maniega. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J. Am. Heart Assoc. 4(6):e001140, 2015.

    PubMed Central  Google Scholar 

  39. Yan, J. G., L. L. Zhang, M. Agresti, J. LoGiudice, J. R. Sanger, H. S. Matloub, and R. Havlik. Neural systemic impairment from whole-body vibration. J. Neurosci. Res. 93(5):736–744, 2015.

    CAS  PubMed  Google Scholar 

  40. Yan, J. G., L. L. Zhang, M. Agresti, Y. Yan, J. LoGiudice, J. R. Sanger, et al. Cumulative brain injury from motor vehicle-induced whole-body vibration and prevention by human apolipoprotein AI molecule mimetic (4F) peptide (an Apo AI mimetic). J. Stroke Cerebrovasc. Dis. 24(12):2759–2773, 2015.

    PubMed  PubMed Central  Google Scholar 

  41. Zhao, B. Q., E. Tejima, and E. H. Lo. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke 38(2):748–752, 2007.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Martin Hunter, Will Collins, and Disha Sood for their technical expertise and assistance. This work was supported by the NIH (R01NS092847, P41EB027062, Research Infrastructure Grant NIHS10 OD021624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Additional information

Associate Editor Leonidas D. Iasemidis oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouleau, N., Murugan, N.J., Rusk, W. et al. Matrix Deformation with Ectopic Cells Induced by Rotational Motion in Bioengineered Neural Tissues. Ann Biomed Eng 48, 2192–2203 (2020). https://doi.org/10.1007/s10439-020-02561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02561-6

Keywords

Navigation