Skip to main content
Log in

Relative Surface Velocity of the Tibiofemoral Joint and Its Relation to the Development of Osteoarthritis After Joint Injury

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The relative velocity of the tibiofemoral surfaces during gait before and after partial-ACL and full MCL transection (p-ACL/MCL Tx) was examined in an ovine model (N = 5) and the relation between the variation in the relative sliding velocity component and gross morphological damage was investigated. We defined the in vivo kinematics of the tibiofemoral joints by using an instrumented spatial linkage and then determining the relative velocity components on the reconstructed femoral condyle surfaces. One major finding was that the magnitude of the relative velocity components was relatively high during the initial stance period of the gait and oscillated with a decaying envelope. Interestingly, for most subjects, the highest value of relative sliding velocity occurred during the stance phase, and not swing. The magnitude of the relative velocity components was increased in 3/5 subjects during stance after an injury. For the lateral compartment, there was a significant correlation (p value = 0.005) between the joint gross morphological damage and the increase in the maximum relative sliding velocity during stance. For the medial compartment, there was a trend (p value < 0.1) between the joint gross morphological score and the increase in the maximum relative sliding velocity during stance, 20 weeks after injury. In conclusion, a connection between an increase in the relative surface velocity and gross morphological damage might be due to an increase in the normal stress and the plowing friction between the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, D. D., S. Chubinskaya, F. Guilak, J. A. Martin, T. R. Oegema, S. A. Olson, and J. A. Buckwalter. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29:802–809, 2011.

    Article  Google Scholar 

  2. Anderst, W. J., and S. Tashman. The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J. Orthop. Res. 27:71–77, 2009.

    Article  Google Scholar 

  3. Andriacchi, T. P., P. L. Briant, S. L. Bevill, and S. Koo. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin. Orthop. Relat. Res. 442:39–44, 2006.

    Article  Google Scholar 

  4. Barton, K. I., M. Shekarforoush, B. J. Heard, J. L. Sevick, P. Vakil, M. Atarod, R. Martin, Y. Achari, D. A. Hart, C. B. Frank, and N. G. Shrive. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. J. Orthop. Res. 35:454–465, 2017.

    Article  Google Scholar 

  5. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.

    Article  Google Scholar 

  6. Berchuck, M., T. P. Andriacchi, B. R. Bach, and B. Reider. Gait adaptations by patients who have a deficient anterior cruciate ligament. J. Bone Joint Surg. Am. 72:871–877, 1990.

    Article  CAS  Google Scholar 

  7. Beveridge, J. E., B. J. Heard, N. G. Shrive, and C. B. Frank. Tibiofemoral centroid velocity correlates more consistently with cartilage damage than does contact path length in two ovine models of stifle injury. J. Orthop. Res. 31:1745–1756, 2013.

    PubMed  Google Scholar 

  8. Brandt, K. D., M. Doherty, and S. Lohmander. Osteoarthritis. Oxford: Oxford University Press, 2003.

    Google Scholar 

  9. Cummings, J. F., E. S. Grood, M. S. Levy, D. L. Korvick, R. Wyatt, and F. R. Noyes. The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J. Orthop. Res. 20:338–345, 2002.

    Article  CAS  Google Scholar 

  10. Damiano, D. L., and M. F. Abel. Relation of gait analysis to gross motor function in cerebral palsy. Dev. Med. Child Neurol. 38:389–396, 1996.

    Article  CAS  Google Scholar 

  11. Drez, D. J., J. DeLee, J. P. Holden, S. Arnoczky, F. R. Noyes, and T. S. Roberts. Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts: a biological and biomechanical evaluation in goats. Am. J. Sports Med. 19(256–63):1991, 1991.

    Google Scholar 

  12. Elsaid, K. A., G. D. Jay, M. L. Warman, D. K. Rhee, and C. O. Chichester. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum. 52:1746–1755, 2005.

    Article  CAS  Google Scholar 

  13. Elsaid, K. A., J. T. Machan, K. Waller, B. C. Fleming, and G. D. Jay. The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor α on chondroprotection in an animal model. Arthritis Rheum. 60:2997–3006, 2009.

    Article  CAS  Google Scholar 

  14. Frank, C. B., J. E. Beveridge, K. D. Huebner, B. J. Heard, J. E. Tapper, E. J. O. O’Brien, and N. G. Shrive. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J. Orthop. Res. 30:384–392, 2012.

    Article  Google Scholar 

  15. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  Google Scholar 

  16. Kotulski, Z. A., and W. Szczepinski. Error Analysis with Applications in Engineering. Dordrecht: Springer, Netherlands, 2010.

    Book  Google Scholar 

  17. Linn, F. C. Lubrication of animal joints. II. The mechanism. J. Biomech. 1:193–205, 1968.

    Article  CAS  Google Scholar 

  18. Mow, V. C., G. A. Ateshian, and R. L. Spilker. Biomechanics of diarthrodial joints: a review of twenty years of progress. J. Biomech. Eng. 115:460, 1993.

    Article  CAS  Google Scholar 

  19. Osterhoff, G., S. Löffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 18:98–103, 2011.

    Article  Google Scholar 

  20. Reynolds, O. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc. R. Soc. Lond. 40:191–203, 1886.

    Article  Google Scholar 

  21. Rosvold, J. M., M. Atarod, C. B. Frank, and N. G. Shrive. An instrumented spatial linkage for measuring knee joint kinematics. Knee 23:43–48, 2016.

    Article  Google Scholar 

  22. Schmidt, T. A., and R. L. Sah. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr. Cartil. 15:35–47, 2007.

    Article  CAS  Google Scholar 

  23. Schuler, N. B., M. J. Bey, J. T. Shearn, and D. L. Butler. Evaluation of an electromagnetic position tracking device for measuring in vivo, dynamic joint kinematics. J. Biomech. 38:2113–2117, 2005.

    Article  CAS  Google Scholar 

  24. Shekarforoush, M., K. I. Barton, M. Atarod, B. J. Heard, J. L. Sevick, R. Martin, D. A. Hart, C. B. Frank, and N. G. Shrive. An explicit method for analysis of three-dimensional linear and angular velocity of a joint, with specific application to the knee joint. J. Med. Biol. Eng. 38:1–11, 2017. https://doi.org/10.1007/s40846-017-0298-1.

    Article  Google Scholar 

  25. Shekarforoush, M., K. I. Barton, J. E. Beveridge, M. Scott, C. R. Martin, G. Muench, B. J. Heard, J. L. Sevick, D. A. Hart, C. B. Frank, and N. G. Shrive. Alterations in joint angular velocity following traumatic knee injury in ovine models. Ann. Biomed. Eng. 2019. https://doi.org/10.1007/s10439-019-02203-6.

    Article  PubMed  Google Scholar 

  26. Shekarforoush, M., J. E. Beveridge, D. A. Hart, C. B. Frank, and N. G. Shrive. Correlation between translational and rotational kinematic abnormalities and osteoarthritis-like damage in two in vivo sheep injury models. J. Biomech. 2018. https://doi.org/10.1016/j.jbiomech.2018.04.046.

    Article  PubMed  Google Scholar 

  27. Sonnery-Cottet, B., and P. Colombet. Partial tears of the anterior cruciate ligament. Orthop. Traumatol. Surg. Res. 102:S59–S67, 2016.

    Article  CAS  Google Scholar 

  28. Sweigart, M. A., C. F. Zhu, D. M. Burt, P. D. DeHoll, C. M. Agrawal, T. O. Clanton, and K. A. Athanasiou. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng. 32:1569–1579, 2004.

    Article  CAS  Google Scholar 

  29. Tapper, J. E., S. Fukushima, H. Azuma, C. Sutherland, L. Marchuk, G. M. Thornton, J. L. Ronsky, R. Zernicke, N. G. Shrive, and C. B. Frank. Dynamic in vivo three-dimensional (3D) kinematics of the anterior cruciate ligament/medial collateral ligament transected ovine stifle joint. J. Orthop. Res. 26:660–672, 2008.

    Article  Google Scholar 

  30. Tapper, J. E., J. L. Ronsky, M. J. Powers, C. Sutherland, T. Majima, C. B. Frank, and N. G. Shrive. In vivo measurement of the dynamic 3-D kinematics of the ovine stifle joint. J. Biomech. Eng. 126:301–305, 2004.

    Article  Google Scholar 

  31. Temponi, E. F., L. H. de Carvalho Júnior, B. Sonnery-Cottet, and P. Chambat. Partial tearing of the anterior cruciate ligament: diagnosis and treatment. Rev. Bras. Ortop. 50:9–15, 2015.

    Article  Google Scholar 

  32. Waldman, S. D., and J. T. Bryant. Dynamic contact stress and rolling resistance model for total knee arthroplasties. J. Biomech. Eng. 119:254–260, 1997.

    Article  CAS  Google Scholar 

  33. Wang, H., and G. A. Ateshian. The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J. Biomech. 30:771–776, 1997.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Sarah Flynn, Dean Brown, Vanessa Oliver, Cynddae McGown, Barbara Smith and Yamini Achari for their technical expertise. This work was funded by the Canadian Institutes of Health Research and The Arthritis Society (NGS, DAH). The authors have not received any financial support that may be perceived as a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shekarforoush.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekarforoush, M., Vakiel, P., Scott, M. et al. Relative Surface Velocity of the Tibiofemoral Joint and Its Relation to the Development of Osteoarthritis After Joint Injury. Ann Biomed Eng 48, 695–708 (2020). https://doi.org/10.1007/s10439-019-02392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02392-0

Keywords

Navigation