Skip to main content

Advertisement

Log in

Methods for Gait Analysis During Obstacle Avoidance Task

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we present algorithms developed for gait analysis, but suitable for many other signal processing tasks. A novel general-purpose algorithm for extremum estimation of quasi-periodic noisy signals is proposed. This algorithm is both flexible and robust, and allows custom adjustments to detect a predetermined wave pattern while being immune to signal noise and variability. A method for signal segmentation was also developed for analyzing kinematic data recorded while performing on obstacle avoidance task. The segmentation allows detecting preparation and recovery phases related to obstacle avoidance. A simple kernel-based clustering method was used for classification of unsupervised data containing features of steps within the walking trial and discriminating abnormal from regular steps. Moreover, a novel algorithm for missing data approximation and adaptive signal filtering is also presented. This algorithm allows restoring faulty data with high accuracy based on the surrounding information. In addition, a predictive machine learning technique is proposed for supervised multiclass labeling with non-standard label structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Azami, H., S. Sanei, and K. Mohammadi. A novel signal segmentation method based on standard deviation and variable threshold. Int. J. Comput. Appl. 34:27–34, 2011.

    Google Scholar 

  2. Brockwell, P. J., and R. A. Davis. Introduction to Time Series and Forecasting (3rd ed.). Cham: Springer, pp. 39–94, 2016.

    Book  Google Scholar 

  3. Cho, C., W. Hwang, S. Hwang, and Y. Chung. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J. Exp. Med. 238(3):213–218, 2016.

    Article  Google Scholar 

  4. Dingwell, J. B., and B. L. Davis. A rehabilitation treadmill with software for providing real-time gait analysis and visual feedback. J. Biomech. Eng. 118(2):253–255, 1996.

    Article  CAS  Google Scholar 

  5. Dingwell, J. B., B. L. Davis, and D. M. Frazier. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet. Orthot. Int. 20:101–110, 1996.

    CAS  PubMed  Google Scholar 

  6. Du, P., W. A. Kibbe, and S. M. Lin. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22:2059–2065, 2006.

    Article  CAS  Google Scholar 

  7. Harmer, K., G. Howells, W. Sheng, M. Fairhurst, and F. Deravi. A peak-trough detection algorithm based on momentum. In: Proceedings of the International Congress on Image and Signal Processing CISP ’08, Sanya, Hainan, China, Vol. 4, pp. 454–458, 2008.

  8. Hubert, P., L. Padovese, and J. M. Stern. A sequential algorithm for signal segmentation. Entropy 20(1):55, 2018.

    Article  Google Scholar 

  9. Jarman, K. H., D. S. Daly, K. K. Anderson, and K. L. Wahl. A new approach to automated peak detection. Chemom. Intell. Lab. Syst. 69:61–76, 2003.

    Article  CAS  Google Scholar 

  10. Kaymak, B., and A. R. Soylu. Fundamentals of Quantitative Gait Analysis. Cham: Springer, pp. 93–106, 2016.

    Google Scholar 

  11. Kress, R. Numerical Analysis. New York: Springer, pp. 169–179, 1998.

    Book  Google Scholar 

  12. Mannering, N., T. Young, T. Spelman, and P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait. Bone Joint Res. 6(8):514–521, 2017.

    Article  CAS  Google Scholar 

  13. Mirelman, A., L. Rochester, M. Reelick, F. Nieuwhof, E. Pelosin, G. Abbruzzese, K. Dockx, A. Nieuwboer, and J. M. Hausdorff. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol. 13(1):15, 2013.

    Article  Google Scholar 

  14. Mirelman, A., L. Rochester, I. Maidan, S. Del-Din, L. Alcock, F. Nieuwhof, M. O. Rikkert, B. R. Bloem, E. Pelosin, L. Avanzino, G. Abbruzzese, K. Dockx, E. Bekkers, N. Giladi, A. Nieuwboer, and J. M. Hausdorff. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. The Lancet 388(10050):1170–1182, 2016.

    Article  Google Scholar 

  15. Mtetwa, N., and L. S. Smith. Smoothing and thresholding in neuronal spike detection. Neurocomputing 69:1366–1370, 2006.

    Article  Google Scholar 

  16. Nelson, R. C., C. J. Dillman, P. Lagasse, and P. Bickett. Biomechanics of overground versus treadmill running. Med. Sci. Sports 4(4):233–240, 1972.

    CAS  PubMed  Google Scholar 

  17. Nenadic, Z., and J. W. Burdick. Spike detection using the continuous wavelet transform. IEEE Trans. Biomed. Eng. 52:74–87, 2005.

    Article  Google Scholar 

  18. O’Loughlin, J. L., Y. Robitaille, J. F. Boivin, and S. Suissa. Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am. J. Epidemiol. 137:342–354, 1993.

    Article  Google Scholar 

  19. Oh-Park, M., R. Holtzer, J. Mahoney, C. Wang, and J. Verghese. Effect of treadmill training on specific gait parameters in older adults with frailty: case series. J. Geriatr. Phys. Ther. 34(4):184–188, 2011.

    Article  Google Scholar 

  20. Palshikar, G. Simple algorithms for peak detection in time-series. In: Proceedings of 1st IIMA International Conference on Advanced Data Analysis, Business Analytics and Intelligence, Ahmedabad, India, 2009.

  21. Peruzzi, A., A. Cereatti, U. D. Croce, I. R. Zarbo, and A. Mirelman. Treadmill-virtual reality combined training program to improve gait in multiple sclerosis individuals. International Conference on Virtual Rehabilitation (ICVR), 2015.

  22. Reed, L. F., S. R. Urry, and S. C. Wearing. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system. BMC Musculoskelet. Disord. 14:249, 2013.

    Article  Google Scholar 

  23. Scholkmann, F., J. Boss, and M. Wolf. An efficient algorithm for automatic peak detection in noisy periodic and quasi-periodic signals. Algorithms 5:588–603, 2012.

    Article  Google Scholar 

  24. Shema, S. R., M. Brozgol, M. Dorfman, I. Maidan, L. Sharaby-Yeshayahu, H. Malik-Kozuch, O. Wachsler-Yannai, N. Giladi, J. M. Hausdorff, and A. Mirelman. Clinical experience using a 5-week treadmill training program with virtual reality to enhance gait in an ambulatory physical therapy service. Phys. Ther. 94(9):1319–1326, 2014.

    Article  Google Scholar 

  25. Souza, G. S. S. E., F. B. Rodrigues, A. O. Andrade, and M. F. Vieira. A simple, reliable method to determine the mean gait speed using heel markers on a treadmill. Comput. Methods Biomech. Biomed. Eng. 20(8):901–904, 2017.

    Article  Google Scholar 

  26. Stevens, J. A., M. F. Ballesteros, K. A. Mack, R. A. Rudd, E. DeCaro, and G. Adler. Gender differences in seeking care for falls in the aged medicare population. Am. J. Prev. Med. 43:59–62, 2012.

    Article  Google Scholar 

  27. Tesio, L., C. Malloggi, N. M. Portinaro, L. Catino, N. Lovecchio, and V. Rotac. Gait analysis on force treadmill in children: comparison with results from ground-based force platforms. Int. J. Rehabil. Res. 40(4):315–324, 2017.

    Article  Google Scholar 

  28. Ukil,A., and R. Živanović. Automatic signal segmentation based on abrupt change detection for power systems applications. In: IEEE Xplore, 2006 IEEE Power India Conference, New Delhi, p. 8, 2006.

  29. Wall, J. C., and J. Charteris. A kinematic study of long-term habituation to treadmill walking. Ergonomics 24(7):531–542, 1981.

    Article  CAS  Google Scholar 

  30. Wee, A., D. B. Grayden, Y. Zhu, K. Petrkovic-Duran, and D. Smith. A continuous wavelet transform algorithm for peak detection. Electrophoresis 29:4215–4225, 2008.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Mr. Gecht Gilad and Mr. Aharoni Nir for implementation and testing of the algorithm predicting input parameters for CCFA. This research was supported in part by the European Commission (FP7 Project V-TIME- 278169).

Conflict of interest

Virtual reality for movement disorder diagnosis and/or treatment; A patent application on the use of virtual reality has been submitted, the intellectual property rights for are held by the Tel Aviv Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Patashov.

Additional information

Associate Editor Joel D Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patashov, D., Menahem, Y., Ben-Haim, O. et al. Methods for Gait Analysis During Obstacle Avoidance Task. Ann Biomed Eng 48, 634–643 (2020). https://doi.org/10.1007/s10439-019-02380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02380-4

Keywords

Navigation