Skip to main content

Advertisement

Log in

ECM-Mimetic Multiresponsive Nanobullets Targeted Against Metastasizing Circulating Tumor Clusters in Breast Cancer

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Targeting smaller populations of circulating tumor clusters (CTC) with tumor-initiating and colonization potentials at distant sites in circulation remains a challenge as clusters possess both epithelial and mesenchymal characteristics. Bullet shaped ellipsoidal nanostructures of size 600 ± 11.3 nm (major axis) and 281.9 ± 5.3 nm (minor axis) with 2.2 aspect ratio were self-assembled using inorganic and organic GRAS biomaterials to preferentially target tumor-causing CTCs. Negatively-charged chondroitin sulfate in presence of gelatin guides unidirectional growth of calcium carbonate mesocrystals to form nanobullets, mediates CD44 targeting of CTCs. Switchable multi-responsive drug release profiles (temperature and pH) were recorded for nanobullets promoting spontaneous and efficient cell-killing. CD44 and E-cadherin overexpressing ‘seeding’ cell clusters of 170 ± 22 µm were developed as in vitro CTC model. pH responsive release of Dox into lysosome stimulates calcium influx resulting in cell death. CD44-blocked CTCs showed significantly reduced internalization when compared to CD44-expressing CTCs thereby confirming CD44 specific internalization of nanobullets. Significantly retarded expansion of clusters when shifted to cell adhesive surfaces depicts the potential of nanobullets against colonization of CTCs. Hence, newer insights on developed anisotropic ECM-mimetic nanohybrids would enhance targeted capture of tumor-initiating clusters in systemic circulation that would potentially reduce the progression of tumor in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Al-Hajj, M., M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. 100:3983–3988, 2003.

    Article  CAS  Google Scholar 

  2. Anurag Singh, J. S. EMT cancer stem cells and drug resistance. Oncogene 29:4741–4751, 2011.

    Article  Google Scholar 

  3. Asimakopoulou, A. P., A. D. Theocharis, G. N. Tzanakakis, and N. K. Karamanos. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. Vivo (Brooklyn) 22:385–390, 2008.

    CAS  Google Scholar 

  4. Bidard, F., C. Proudhon, and J. Pierga. Circulating tumor cells in breast cancer. Mol. Oncol. 10:418–430, 2016.

    Article  Google Scholar 

  5. Chen, L., S. Xiao, H. Zhu, L. Wang, and H. Liang. Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter 12:2632–2641, 2016.

    Article  CAS  Google Scholar 

  6. Chen, C., S. Zhao, A. Karnad, and J. W. Freeman. The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11:1–23, 2018.

    Article  Google Scholar 

  7. Dasgupta, A., A. R. Lim, and C. M. Ghajar. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol. Oncol. 11:40–61, 2017.

    Article  Google Scholar 

  8. De Lima, J. M., R. R. Sarmento, J. R. De Souza, F. A. Brayner, A. Paula, S. Feitosa, R. Padilha, L. C. Alves, I. J. Porto, R. Ferreti, B. Dantas, J. E. De Oliveira, E. S. De Medeiros, P. Rogério, F. Bonan, and L. R. Castellano. Evaluation of hemagglutination activity of chitosan nanoparticles using human erythrocytes. Biomed Res. Int. 3–9:2015, 2015.

    Google Scholar 

  9. Dhandapani, R., S. Sethuraman, and A. Subramanian. Nanohybrids—cancer theranostics for tiny tumor clusters. J. Control. Release 299:21–30, 2019.

    Article  CAS  Google Scholar 

  10. Dong, Z., L. Feng, W. Zhu, X. Sun, M. Gao, H. Zhao, Y. Chao, and Z. Liu. CaCO3 nanoparticles as an ultra-sensitive tumor-pH-responsive nanoplatform enabling real-time drug release monitoring and cancer combination therapy. Biomaterials 110:60–70, 2016.

    Article  CAS  Google Scholar 

  11. Eroglu, Z., O. Fielder, and G. Somlo. Analysis of circulating tumor cells in breast cancer. J. Natl. Compr. Cancer Netw. 11:977–985, 2013.

    Article  Google Scholar 

  12. Fu, W., M. H. Mohd Noor, L. M. Yusof, T. A. T. Ibrahim, Y. S. Keong, A. Z. Jaji, and M. Z. A. B. Zakaria. In vitro evaluation of a novel pH sensitive drug delivery system based cockle shell-derived aragonite nanoparticles against osteosarcoma. J. Exp. Nanosci. 8080:1–22, 2017.

    Google Scholar 

  13. Giuliano, M., A. Shaikh, H. C. Lo, G. Arpino, S. De Placido, X. H. Zhang, M. Cristofanilli, R. Schiff, and M. V. Trivedi. Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res. 78:845–852, 2018.

    Article  CAS  Google Scholar 

  14. Hong, Y., F. Fang, and Q. Zhang. Circulating tumor cell clusters: what we know and what we expect. Int. J. Oncol. 49:2206–2216, 2016.

    Article  CAS  Google Scholar 

  15. Jiang, H., X. Y. Liu, G. Zhang, and Y. Li. Kinetics and template nucleation of self-assembled hydroxyapatite nanocrystallites by chondroitin sulfate. J. Biol. Chem. 280:42061–42066, 2005.

    Article  CAS  Google Scholar 

  16. Liu, Z., Y. Xiao, W. Chen, Y. Wang, B. Wang, and G. Wang. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J. Mater. Chem. B 2:3480–3489, 2014.

    Article  CAS  Google Scholar 

  17. Liu, L., X. Zhang, X. Liu, J. Liu, G. Lu, D. L. Kaplan, H. Zhu, and Q. Lu. Biomineralization of stable and monodisperse vaterite microspheres using silk nanoparticles. ACS Appl. Mater. Interfaces 7:1735–1745, 2015.

    Article  CAS  Google Scholar 

  18. Man, Y., Q. Wang, and W. Kemmner. Currently used markers for CTC isolation—advantages, limitations and impact on cancer prognosis. J. Clin. Exp. Pathol. 01:1–7, 2011.

    Article  Google Scholar 

  19. Micalizzi, D. S., S. Maheswaran, and D. A. Haber. A conduit to metastasis: circulating tumor. Cell Biol. 31:1827–1840, 2017.

    CAS  Google Scholar 

  20. Monzavi-Karbassi, B., J. S. Stanley, L. Hennings, F. Jousheghany, C. Artaud, S. Shaaf, and T. Kieber-Emmons. Chondroitin sulfate glycosaminoglycans as major P-selectin ligands on metastatic breast cancer cell lines. Int. J. Cancer 120:1179–1191, 2007.

    Article  CAS  Google Scholar 

  21. Nagarajan, S., L. Soussan, M. Bechelany, C. Teyssier, V. Cavaillès, C. Pochat-Bohatier, P. Miele, N. Kalkura, J. M. Janot, and S. Balme. Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. J. Mater. Chem. B 4:1134–1141, 2016.

    Article  CAS  Google Scholar 

  22. Poruk, K. E., A. L. Blackford, M. J. Weiss, J. L. Cameron, J. He, M. Goggins, Z. A. Rasheed, C. L. Wolfgang, and L. D. Wood. Circulating tumor cells expressing markers of tumor-initiating cells predict poor survival and cancer recurrence in patients with pancreatic ductal adenocarcinoma. Clin. Cancer Res. 23:2681–2690, 2017.

    Article  CAS  Google Scholar 

  23. Punnoose, E. A., S. K. Atwal, J. M. Spoerke, H. Savage, A. Pandita, A. Pirzkall, B. M. Fine, L. C. Amler, D. S. Chen, and M. R. Lackner. Molecular biomarker analyses using circulating tumor cells. PLoS ONE 5:e1257, 2010.

    Article  Google Scholar 

  24. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2018. CA. Cancer J. Clin. 68:7–30, 2018.

    Article  Google Scholar 

  25. Soundararajan, A., J. Muralidhar, R. Dhandapani, J. Radhakrishnan, A. Manigandan, S. Kalyanasundaram, S. Sethuraman, and A. Subramanian. Surface topography of polylactic acid nanofibrous mats: influence on blood compatibility. J. Mater. Sci. Mater. Med. 29:145, 2018.

    Article  Google Scholar 

  26. Spaeth, E. L., A. M. Labaff, B. P. Toole, A. Klopp, M. Andreeff, and F. C. Marini. Mesenchymal CD44 expression contributes to the acquisition of an activated fibroblast phenotype via TWIST activation in the tumor microenvironment. Cancer Res. 73:5347–5359, 2013.

    Article  CAS  Google Scholar 

  27. Thapa, R., and G. D. Wilson. The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells Int. 2016:2087204, 2016.

    Article  Google Scholar 

  28. Yang, X., S. K. Sarvestani, S. Moeinzadeh, X. He, and E. Jabbari. Effect of CD44 binding peptide conjugated to an engineered inert matrix on maintenance of breast cancer stem cells and tumorsphere formation. PLoS ONE 8:1–15, 2013.

    Article  Google Scholar 

  29. Yu, M., A. Bardia, B. S. Wittner, S. L. Stott, M. E. Smas, D. T. Ting, S. J. Isakoff, J. C. Ciciliano, M. N. Wells, A. M. Shah, K. F. Concannon, M. C. Donaldson, L. V. Sequist, E. Brachtel, D. Sgroi, J. Baselga, S. Ramaswamy, and M. Toner. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(80):580–584, 2013.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Y. Lv, Y. Niu, H. Su, and A. Feng. Role of circulating tumor cell (CTC) monitoring in evaluating prognosis of triple-negative breast cancer patients in China. Med. Sci. Monit. 23:3071–3079, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank PG-Teaching (SR/NM/PG-04/2015), Nano Mission (SR/NM/NS-1205/2015(G), FIST (SR/FST/LSI-327/2007, SR/FST/LSI-622/2014), Department of Science and Technology, Government of India for financial support. First Author is thankful to Council of Scientific and Industrial Research for senior research fellowship (09/1095(0022)/18-EMR-I), Government of India.

Conflict of interest

Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Subramanian.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhandapani, R., Subramanian, A. & Sethuraman, S. ECM-Mimetic Multiresponsive Nanobullets Targeted Against Metastasizing Circulating Tumor Clusters in Breast Cancer. Ann Biomed Eng 48, 568–581 (2020). https://doi.org/10.1007/s10439-019-02370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02370-6

Keywords

Navigation