Skip to main content
Log in

Effect of Subject-Specific Vertebral Position and Head and Neck Size on Calculation of Spine Musculoskeletal Moments

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Spine musculoskeletal models used to estimate loads and displacements require many simplifying assumptions. We examined how assumptions about subject size and vertebral positions can affect the model outcomes. Head and neck models were developed to represent 30 subjects (15 males and 15 females) in neutral posture and in forward head postures adopted while using tablet computers. We examined the effects of (1) subject size-specific parameters for head mass and muscle strength; and (2) vertebral positions obtained either directly from X-ray or estimated from photographs. The outcome metrics were maximum neck extensor muscle moment, gravitational moment of the head, and gravitational demand, the ratio between gravitational moment and maximum muscle moment. The estimates of maximum muscle moment, gravitational moment and gravitational demand were significantly different when models included subject-specific vertebral positions. Outcome metrics of models that included subject-specific head and neck size were not significantly different from generic models on average, but they had significant sex differences. This work suggests that developing models from X-rays rather than photographs has a large effect on model predictions. Moreover, size-specific model parameters may be important to evaluate sex differences in neck musculoskeletal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ackland, D. C., Y. C. Lin, and M. G. Pandy. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech 45:1463–1471, 2012.

    Article  PubMed  Google Scholar 

  2. Amevo, B., D. Worth, and N. Bogduk. Instantaneous axes of rotation of the typical cervical motion segments: A study in normal volunteers. Clin Biomech (Bristol, Avon) 6:111–117, 1991.

    Article  CAS  Google Scholar 

  3. Anderst, W. J., W. F. Donaldson, 3rd, J. Y. Lee, and J. D. Kang. Cervical motion segment percent contributions to flexion-extension during continuous functional movement in control subjects and arthrodesis patients. Spine 38:E533, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anderst, W. J., W. F. Donaldson, J. Y. Lee, and J. D. Kang. Cervical spine intervertebral kinematics with respect to the head are different during flexion and extension motions. J Biomech 46:1471–1475, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bolsterlee, B., A. N. Vardy, F. C. van der Helm, and H. E. Veeger. The effect of scaling physiological cross-sectional area on musculoskeletal model predictions. J Biomech 48:1760–1768, 2015.

    Article  PubMed  Google Scholar 

  6. Cazzola, D., T. P. Holsgrove, E. Preatoni, H. S. Gill, and G. Trewartha. Cervical spine injuries: a whole-body musculoskeletal model for the analysis of spinal loading. PLoS ONE 12:e0169329, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Christophy, M., N. A. Faruk, J. C. Senan, and O. M. O’Reilly. A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11:19–34, 2012.

    Article  PubMed  Google Scholar 

  8. Clauser, C. E., J. T. McConville, and J. M. Young. Weight volume and center of mass of segments of the human body. Yellow Springs: Wright-Patterson Air Force Base, 1979.

    Google Scholar 

  9. Cook, D. D., and D. J. Robertson. The generic modeling fallacy: Average biomechanical models often produce non-average results!. J Biomech 49:3609–3615, 2016.

    Article  PubMed  Google Scholar 

  10. Correa, T. A., and M. G. Pandy. A mass-length scaling law for modeling muscle strength in the lower limb. J Biomech 44:2782–2789, 2011.

    Article  PubMed  Google Scholar 

  11. Desantis Klinich, K., S. M. Ebert, C. A. Van Ee, C. A. Flannagan, M. Prasad, M. P. Reed, and L. W. Schneider. Cervical spine geometry in the automotive seated posture: variations with age, stature, and gender. Stapp Car Crash J 48:301–330, 2004.

    PubMed  Google Scholar 

  12. Frobin, W., G. Leivseth, M. Biggemann, and P. Brinckmann. Sagittal plane segmental motion of the cervical spine. A new precision measurement protocol and normal motion data of healthy adults. Clin Biomech (Bristol, Avon) 17:21–31, 2002.

    Article  CAS  Google Scholar 

  13. Ghezelbash, F., A. Shirazi-Adl, N. Arjmand, Z. El-Ouaaid, A. Plamondon, and J. R. Meakin. Effects of sex, age, body height and body weight on spinal loads: Sensitivity analyses in a subject-specific trunk musculoskeletal model. J Biomech 49:3492–3501, 2016.

    Article  CAS  PubMed  Google Scholar 

  14. Hajihosseinali, M., N. Arjmand, and A. Shirazi-Adl. Effect of body weight on spinal loads in various activities: a personalized biomechanical modeling approach. J Biomech 48:276–282, 2015.

    Article  CAS  PubMed  Google Scholar 

  15. Knarr, B. A., and J. S. Higginson. Practical approach to subject-specific estimation of knee joint contact force. J Biomech 48:2897–2902, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McGill, S. M., and R. W. Norman. Partitioning of the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678, 1986.

    Article  CAS  PubMed  Google Scholar 

  17. Myers, C. A., P. J. Laz, K. B. Shelburne, and B. S. Davidson. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann Biomed Eng 43:1098–1111, 2015.

    Article  PubMed  Google Scholar 

  18. NASA. Anthropometric Source Book, vol. 1: Anthropometry for Designers [Reference Publication 1024]. Hanover, MD: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1978.

    Google Scholar 

  19. Netto, K. J., A. F. Burnett, J. P. Green, and J. P. Rodrigues. Validation of an EMG-driven, graphically based isometric musculoskeletal model of the cervical spine. J Biomech Eng 130:031014, 2008.

    Article  PubMed  Google Scholar 

  20. Nevins, D. D., L. Zheng, and A. N. Vasavada. Inter-individual variation in vertebral kinematics affects predictions of neck musculoskeletal models. J Biomech 47:3288–3294, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reitman, C. A., K. M. Mauro, L. Nguyen, J. M. Ziegler, and J. A. Hipp. Intervertebral motion between flexion and extension in asymptomatic individuals. Spine 29:2832–2843, 2004.

    Article  PubMed  Google Scholar 

  22. Sato, F., M. Odani, Y. Miyazaki, K. Yamazaki, J. Osth, and M. Svensson. Effects of whole spine alignment patterns on neck responses in rear end impact. Traffic Inj Prev 18:199–206, 2017.

    Article  PubMed  Google Scholar 

  23. Straker, L., R. Skoss, A. Burnett, and R. Burgess-Limerick. Effect of visual display height on modelled upper and lower cervical gravitational moment, muscle capacity and relative strain. Ergonomics 52:204–221, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Suderman, B. L., and A. N. Vasavada. Neck muscle moment arms obtained in-vivo from MRI: effect of curved and straight modeled paths. Ann Biomed Eng 45:2009–2024, 2017.

    Article  PubMed  Google Scholar 

  25. Thuresson, M., B. Ang, J. Linder, and K. Harms-Ringdahl. Mechanical load and EMG activity in the neck induced by different head-worn equipment and neck postures. Int J Ind Ergonomics 35:13–18, 2005.

    Article  Google Scholar 

  26. Valente, G., L. Pitto, D. Testi, A. Seth, S. L. Delp, R. Stagni, M. Viceconti, and F. Taddei. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS ONE 9:e112625, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Valero-Cuevas, F. J., M. E. Johanson, and J. D. Towles. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J Biomech 36:1019–1030, 2003.

    Article  PubMed  Google Scholar 

  28. Van den Abbeele, M., F. Li, V. Pomero, D. Bonneau, B. Sandoz, S. Laporte, and W. Skalli. A subject-specific biomechanical control model for the prediction of cervical spine muscle forces. Clin Biomech (Bristol, Avon) 51:58–66, 2018.

    Article  Google Scholar 

  29. Vasavada, A. N., J. Danaraj, and G. P. Siegmund. Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J Biomech 41:114–121, 2008.

    Article  PubMed  Google Scholar 

  30. Vasavada, A. N., S. Li, and S. L. Delp. Influence of muscle morphometry and moment arms on the moment-generating capacity of human neck muscles. Spine 23:412–422, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Vasavada, A. N., D. D. Nevins, S. M. Monda, E. Hughes, and D. C. Lin. Gravitational demand on the neck musculature during tablet computer use. Ergonomics 58:1–15, 2015.

    Article  Google Scholar 

  32. Wu, S. K., L. C. Kuo, H. C. Lan, S. W. Tsai, and F. C. Su. Segmental percentage contributions of cervical spine during different motion ranges of flexion and extension. J Spinal Disord Tech 23:278–284, 2010.

    Article  PubMed  Google Scholar 

  33. Wu, G., S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D. D. D’Lima, L. Cristofolini, H. Witte, O. Schmid, and I. Stokes. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. Int Soc Biomech 35:543–548, 2002.

    Article  Google Scholar 

  34. Zajac, F. E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411, 1989.

    CAS  PubMed  Google Scholar 

  35. Zheng, L., J. Jahn, and A. N. Vasavada. Sagittal plane kinematics of the adult hyoid bone. J Biomech 45:531–536, 2012.

    Article  PubMed  Google Scholar 

  36. Zheng, L., G. Siegmund, G. Ozyigit, and A. Vasavada. Sex-specific prediction of neck muscle volumes. J Biomech 46:899–904, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Roseann Amundsen and Darin Porter of Pullman Regional Hospital Radiology for their assistance with radiographs, and Victor Small, Theodore Gross, Zane Duke and Chandler Shannon for data analysis. Funding was provided by the Office Ergonomics Research Committee and National Science Foundation (CBET #0748303).

Conflict of interest

The authors confirm that there have been no conflicts of interest interfering with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita N. Vasavada.

Additional information

Associate Editor ter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasavada, A.N., Hughes, E., Nevins, D.D. et al. Effect of Subject-Specific Vertebral Position and Head and Neck Size on Calculation of Spine Musculoskeletal Moments. Ann Biomed Eng 46, 1844–1856 (2018). https://doi.org/10.1007/s10439-018-2084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2084-9

Keywords

Navigation