Skip to main content
Log in

Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stride-to-stride time intervals during human walking are characterised by predictability and statistical persistence quantified by sample entropy (SaEn) and detrended fluctuation analysis (DFA) which indicates a time dependency in the gait pattern. However, neither analyses quantify time dependency in a physical or physiological interpretable time scale. Recently, entropic half-life (ENT½) has been introduced as a measure of the time dependency on an interpretable time scale. A novel measure of time dependency, based on DFA, statistical persistence decay (SPD), was introduced. The present study applied SaEn, DFA, ENT½, and SPD in known theoretical signals (periodic, chaotic, and random) and stride-to-stride time intervals during overground and treadmill walking in healthy subjects. The analyses confirmed known properties of the theoretical signals. There was a significant lower predictability (p = 0.033) and lower statistical persistence (p = 0.012) during treadmill walking compared to overground walking. No significant difference was observed for ENT½ and SPD between walking condition, and they exhibited a low correlation. ENT½ showed that predictability in stride time intervals was halved after 11–14 strides and SPD indicated that the statistical persistency was deteriorated to uncorrelated noise after ~50 strides. This indicated a substantial time memory, where information from previous strides affected the future strides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alkjaer, T., P. C. Raffalt, H. Dalsgaard, E. B. Simonsen, N. C. Petersen, H. Bliddal, and M. Henriksen. Gait variability and motor control in people with knee osteoarthritis. Gait Posture 42:479–484, 2015.

    Article  PubMed  Google Scholar 

  2. Baltich, J., V. Von Tscharner, P. Zandiyeh, and B. M. Nigg. Quantification and reliability of center of pressure movement during balance tasks of varying difficulty. Gait Posture 40:327–332, 2014.

    Article  PubMed  Google Scholar 

  3. Bisi, M. C., and R. Stagni. Complexity of human gait pattern at different ages assessed using multiscale entropy: from development to decline. Gait Posture 47:37–42, 2016.

    Article  CAS  PubMed  Google Scholar 

  4. Buzzi, U. H., N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. (Bristol, Avon) 18:435–443, 2003.

    Article  Google Scholar 

  5. Costa, M., C. K. Peng, A. L. Goldberger, and J. M. Hausdorff. Multiscale entropy analysis of human gait dynamics. Physica A 330:53–60, 2003.

    Article  Google Scholar 

  6. Dingwell, J. B., and J. P. Cusumano. Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking. Gait Posture 32:348–353, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dingwell, J. B., J. John, and J. P. Cusumano. Do humans optimally exploit redundancy to control step variability in walking? PLoS Comput. Biol. 6:e1000856, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gates, D. H., J. L. Su, and J. B. Dingwell. Possible biomechanical origins of the long-range correlations in stride intervals of walking. Physica A 380:259–270, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Georgoulis, A. D., C. Moraiti, S. Ristanis, and N. Stergiou. A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: the use of the approximate entropy in orthopaedics. J. Clin. Monit. Comput. 20:11–18, 2006.

    Article  PubMed  Google Scholar 

  10. Goldberger, A. L., L. A. Amaral, J. M. Hausdorff, P. Ivanov, C. K. Peng, and H. E. Stanley. Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA 99(Suppl 1):2466–2472, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hausdorff, J. M. Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 19:026113, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hausdorff, J. M., Y. Ashkenazy, C. K. Peng, P. C. Ivanov, H. E. Stanley, and A. L. Goldberger. When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations. Physica A 302:138–147, 2001.

    Article  CAS  PubMed  Google Scholar 

  13. Hausdorff, J. M., S. L. Mitchell, R. Firtion, C. K. Peng, M. E. Cudkowicz, J. Y. Wei, and A. L. Goldberger. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 82(262–269):1997, 1985.

    Google Scholar 

  14. Hausdorff, J. M., P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 80(1448–1457):1996, 1985.

    Google Scholar 

  15. Hausdorff, J. M., L. Zemany, C. Peng, and A. L. Goldberger. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 86(1040–1047):1999, 1985.

    Google Scholar 

  16. Herman, T., N. Giladi, T. Gurevich, and J. M. Hausdorff. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait Posture 21:178–185, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Jordan, K., J. H. Challis, and K. M. Newell. Walking speed influences on gait cycle variability. Gait Posture 26:128–134, 2007.

    Article  PubMed  Google Scholar 

  18. Kaipust, J. P., J. M. Huisinga, M. Filipi, and N. Stergiou. Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Motor. Control 16:229–244, 2012.

    Article  PubMed  Google Scholar 

  19. Katsavelis, D., M. Mukherjee, L. Decker, and N. Stergiou. The effect of virtual reality on gait variability. Nonlinear Dyn. Psychol. Life Sci. 14:239–256, 2010.

    Google Scholar 

  20. Lee, S. J., and J. Hidler. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 104(747–755):2008, 1985.

    Google Scholar 

  21. Newell, K. M., and D. M. Corcos. Issues in variability and motor control. In: variability and motor control, edited by K. M. Newell, and D. M. Corcos. Champagne, IL: Human Kinetics, 1993.

    Google Scholar 

  22. Newell, K. M., and D. E. Vaillancourt. Dimensional change in motor learning. Hum. Mov. Sci. 20:695–715, 2001.

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen, J. B. How we walk: central control of muscle activity during human walking. Neuroscientist 9:195–204, 2003.

    Article  PubMed  Google Scholar 

  24. Peng, C. K., S. Havlin, H. E. Stanley, and A. L. Goldberger. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87, 1995.

    Article  CAS  PubMed  Google Scholar 

  25. Preatoni, E., J. Hamill, A. J. Harrison, K. Hayes, R. E. Van Emmerik, C. Wilson, and R. Rodano. Movement variability and skills monitoring in sports. Sports Biomech. 12:69–92, 2013.

    Article  PubMed  Google Scholar 

  26. Raffalt, P. C., M. K. Guul, A. N. Nielsen, S. Puthusserypady, and T. Alkjaer. Economy, movement dynamics, and muscle activity of human walking at different speeds. Sci. Rep. 7:43986, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–2049, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. Stergiou, N. Nonlinear Analysis for Human Movement Variability. Boca Raton, FL: CRC Press, 2016.

    Google Scholar 

  29. Stergiou, N., and L. M. Decker. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30:869–888, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stergiou, N., C. Moraiti, G. Giakas, S. Ristanis, and A. D. Georgoulis. The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. Clin. Biomech. (Bristol, Avon) 19:957–963, 2004.

    Article  Google Scholar 

  31. Terrier, P., and O. Deriaz. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J. Neuroeng. Rehabil. 8:12, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Terrier, P., V. Turner, and Y. Schutz. GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum. Mov. Sci. 24:97–115, 2005.

    Article  PubMed  Google Scholar 

  33. Yentes, J. M., N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41:349–365, 2013.

    Article  PubMed  Google Scholar 

  34. Zandiyeh, P., and V. Von Tscharner. Reshape scale method: a novel multi scale entropic analysis approach. Physica A 392:6265–6272, 2013.

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by NASA Nebraska EPSCoR and the National Institutes of Health (P20 GM109090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Yentes.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffalt, P.C., Yentes, J.M. Introducing Statistical Persistence Decay: A Quantification of Stride-to-Stride Time Interval Dependency in Human Gait. Ann Biomed Eng 46, 60–70 (2018). https://doi.org/10.1007/s10439-017-1934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1934-1

Keywords

Navigation