Skip to main content
Log in

Marker-Free Tracking of Facet Capsule Motion Using Polarization-Sensitive Optical Coherence Tomography

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We proposed and tested a method by which surface strains of biological tissues can be captured without the use of fiducial markers by instead, utilizing the inherent structure of the tissue. We used polarization-sensitive optical coherence tomography (PS OCT) to obtain volumetric data through the thickness and across a partial surface of the lumbar facet capsular ligament during three cases of static bending. Reflectivity and phase retardance were calculated from two polarization channels, and a power spectrum analysis was performed on each a-line to extract the dominant banding frequency (a measure of degree of fiber alignment) through the maximum value of the power spectrum (maximum power). Maximum powers of all a-lines for each case were used to create 2D visualizations, which were subsequently tracked via digital image correlation. In-plane strains were calculated from measured 2D deformations and converted to 3D surface strains by including out-of-plane motion obtained from the PS OCT image. In-plane strains correlated with 3D strains (R 2 ≥ 0.95). Using PS OCT for marker-free motion tracking of biological tissues is a promising new technique because it relies on the structural characteristics of the tissue to monitor displacement instead of external fiducial markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ahearne, M., P. O. Bagnaninchi, Y. Yang, and A. J. El Haj. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J. Tissue Eng. Regen. Med. 2:521–524, 2008.

    Article  CAS  PubMed  Google Scholar 

  2. Aksan, A., J. J. McGrath, and D. S. Nielubowicz, Jr. Thermal damage prediction for collagenous tissues part I: a clinically relevant numerical simulation incorporating heating rate dependent denaturation. J. Biomech. Eng. 127:85–97, 2005.

    Article  PubMed  Google Scholar 

  3. Al-Qaisi, M. K., and T. Akkin. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Opt. Express 18:3392–3403, 2010.

    Article  PubMed  Google Scholar 

  4. Andersson, G. B. J. Epidemiological features of chronic low-back pain. Lancet 354:581, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Bayly, P. V., E. H. Clayton, and G. M. Genin. Quantitative imaging methods for the development and validation of brain biomechanics models. Annu. Rev. Biomed. Eng. 14:369–396, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Boyle, J. J., M. Kume, M. A. Wyczalkowski, L. A. Taber, R. B. Pless, Y. Xia, G. M. Genin, and S. Thomopoulos. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues. J. R. Soc. Interface 11:20140685, 2014.

    Article  PubMed  Google Scholar 

  7. Cense, B., N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt. Express 12:2435–2447, 2004.

    Article  PubMed  Google Scholar 

  8. Chandran, P. L., and V. H. Barocas. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126:152–166, 2004.

    Article  PubMed  Google Scholar 

  9. Chao, C. Y., G. Y. Ng, K. K. Cheung, Y. P. Zheng, L. K. Wang, and G. L. Cheing. In vivo and ex vivo approaches to studying the biomechanical properties of healing wounds in rat skin. J. Biomech. Eng. 135:101009, 2013.

    Article  PubMed  Google Scholar 

  10. Cohen, S. P. Pathogenesis, diagnosis, and treatment of lumbar zygapophysial (facet) joint pain. Anesthesiology 106:591, 2007.

    Article  PubMed  Google Scholar 

  11. De Boer, J., S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3:212–218, 1998.

    Article  PubMed  Google Scholar 

  12. Dorrer, C., N. Belabas, J. Likforman, and M. Joffre. Spectral resolution and sampling issues in Fourier-transform spectral interferometry. J. Opt. Soc. A 17:1795, 2000.

    Article  CAS  Google Scholar 

  13. Filas, B. A., I. R. Efimov, and L. A. Taber. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. (Hoboken) 290:1057–1068, 2007.

    Article  Google Scholar 

  14. Filas, B. A., A. K. Knutsen, P. V. Bayly, and L. A. Taber. A new method for measuring deformation of folding surfaces during morphogenesis. J. Biomech. Eng. 130:061010, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Greenleaf, J. F., M. Fatemi, and M. Insana. Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5:57–78, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Ianuzzi, A., J. S. Little, J. B. Chiu, A. Baitner, G. Kawchuk, and P. S. Khalsa. Human lumbar facet joint capsule strains: I. During physiological motions. Spine J. 4:141–152, 2004.

    Article  PubMed  Google Scholar 

  17. Johnson, G. M. The sensory and sympathetic nerve supply within the cervical spine: review of recent observations. Man. Ther. 9:71–76, 2004.

    Article  PubMed  Google Scholar 

  18. Kozanek, M., S. Wang, P. G. Passias, Q. Xia, G. Li, M. Bono, K. B. Wood, and G. Li. Range of motion and orientation of the lumbar facet joints in vivo. Spine (Phila Pa. 1976) 34:E689–E696, 2009.

    Article  Google Scholar 

  19. Lee, D. J., and B. A. Winkelstein. The failure response of the human cervical facet capsular ligament during facet joint retraction. J. Biomech. 45:2325–2329, 2012.

    Article  PubMed  Google Scholar 

  20. Li, P., X. Yin, L. Shi, A. Liu, S. Rugonyi, and R. Wang. Measurement of strain and strain rate in embryonic chick heart in vivo using spectral domain optical coherence tomography. IEEE Trans. Biomed. Eng. 58:10.1109/TBME.2011.2153851. Epub 2011 May 12, 2011.

  21. Liu, D., and E. S. Ebbini. Viscoelastic property measurement in thin tissue constructs using ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55:368–383, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lorenz, M. Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine (Philadelphia, Pa. 1976) 8:122, 1983.

    Article  CAS  Google Scholar 

  23. McKnight, A. L., J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman. MR elastography of breast cancer: preliminary results. Am. J. Roentgenol. 178:1411–1417, 2002.

    Article  Google Scholar 

  24. Nagel, T. M., J. L. Zitnay, V. H. Barocas, and D. J. Nuckley. Quantification of continuous in vivo flexion-extension kinematics and intervertebral strains. Eur. Spine J. 23:754–761, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Okotie, G., S. Duenwald-Kuehl, H. Kobayashi, M. J. Wu, and R. Vanderby. Tendon strain measurements with dynamic ultrasound images: evaluation of digital image correlation. J. Biomech. Eng. 134:024504, 2012.

    Article  PubMed  Google Scholar 

  26. Quinn, K. P. Detection of altered collagen fiber alignment in the cervical facet capsule after whiplash-like joint retraction. Ann. Biomed. Eng. 39:2163, 2011.

    Article  PubMed  Google Scholar 

  27. Quinn, K. P., K. E. Lee, C. C. Ahaghotu, and B. A. Winkelstein. Structural changes in the cervical facet capsular ligament: potential contributions to pain following subfailure loading. Stapp Car Crash J. 51:169–187, 2007.

    PubMed  Google Scholar 

  28. Quinn, K. P., and B. A. Winkelstein. Vector correlation technique for pixel-wise detection of collagen fiber realignment during injurious tensile loading. J. Biomed. Opt. 14:054010, 2009.

    Article  PubMed  Google Scholar 

  29. Raghupathy, R., C. Witzenburg, S. P. Lake, E. A. Sander, and V. H. Barocas. Identification of regional mechanical anisotropy in soft tissue analogs. J. Biomech. Eng. 133:091011, 2011.

    Article  PubMed  Google Scholar 

  30. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671–675, 2012.

    Article  CAS  PubMed  Google Scholar 

  31. Schriefl, A. J., H. Wolinski, P. Regitnig, S. D. Kohlwein, and G. A. Holzapfel. An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues. J. R. Soc. Interface 10:20120760, 2012.

    Article  PubMed  Google Scholar 

  32. Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long. Term. Eff. Med. Implants 2:165–198, 1992.

    CAS  PubMed  Google Scholar 

  33. Smith, R. M., A. J. Black, S. S. Velamakanni, T. Akkin, and E. G. Tolkacheva. Visualizing the complex 3D geometry of the perfusion border zone in isolated rabbit heart. Appl. Opt. 51:2713–2721, 2012.

    Article  PubMed  Google Scholar 

  34. Tower, T. T., and R. T. Tranquillo. Alignment maps of tissues: I. Microscopic elliptical polarimetry. Biophys. J. 81:2954–2963, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Tower, T. T., and R. T. Tranquillo. Alignment maps of tissues: II. Fast harmonic analysis for imaging. Biophys. J. 81:2964–2971, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wang, H., A. Black, J. Zhu, T. W. Stigen, M. Al Qaisi, T. Netoff, A. Abosch, and T. Akkin. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. Neuroimage 58:984–992, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Witzenburg, C. M., R. Y. Dhume, S. P. Lake, V. H. Barocas. Automatic segmentation of mechanically inhomogeneous tissues based on deformation gradient jump. IEEE Trans. Med. Imag. Submitted.

  38. Yamashita, T., Y. Minaki, A. C. Ozaktay, J. M. Cavanaugh, and A. I. King. A morphological study of the fibrous capsule of the human lumbar facet joint. Spine (Philadelphia, Pa. 1976) 21:538–543, 1996.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institutes of Health (U01 EB016638 and T32 AR050938). Computations were made possible by a resources grant from the Minnesota Supercomputing Institute, and we thank Dr. Theoden Netoff for valuable conversations and insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claeson, A.A., Yeh, YJ., Black, A.J. et al. Marker-Free Tracking of Facet Capsule Motion Using Polarization-Sensitive Optical Coherence Tomography. Ann Biomed Eng 43, 2953–2966 (2015). https://doi.org/10.1007/s10439-015-1349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1349-9

Keywords

Navigation