Skip to main content

Advertisement

Log in

Validation of a Quantitative Single-Subject Based Evaluation for Rehabilitation-Induced Improvement Assessment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The foreseen outcome of a rehabilitation treatment is a stable improvement on the functional outcomes, which can be longitudinally assessed through multiple measures to help clinicians in functional evaluation. In this study, we propose an automatic comprehensive method of combining multiple measures in order to assess a functional improvement. As test-bed, a functional electrical stimulation based treatment for foot drop correction performed with chronic post-stroke participants is presented. Patients were assessed on five relevant outcome measures before, after intervention, and at a follow-up time-point. A novel algorithm based on variables minimum detectable change is proposed and implemented in a custom-made software, combining the outcome measures to obtain a unique parameter: capacity score. The difference between capacity scores at different timing is thresholded to obtain improvement evaluation. Ten clinicians evaluated patients on the Improvement Clinical Global Impression scale. Eleven patients underwent the treatment, and five resulted to achieve a stable functional improvement, as assessed by the proposed algorithm. A statistically significant agreement between intra-clinicians and algorithm-clinicians evaluations was demonstrated. The proposed method evaluates functional improvement on a single-subject yes/no base by merging different measures (e.g., kinematic, muscular) and it is validated against clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

EMG:

Electromyography

EV:

Endurance velocity

CGI-I:

Clinical Global Impression scale for Improvement

CS:

Capacity score

GV:

Gait velocity

ICC:

Interclass correlation coefficient

IS:

Improvement score

MAS:

Modified Ashworth Scale

MDC:

Minimum detectable change

MRC index:

Medical Research Council index

FD:

Foot drop

FES:

Functional electrical stimulation

PSL:

Paretic step length

SEM:

Standard error of measurement

TAAI:

Tibialis anterior activation

References

  1. Ambrosini, E., S. Ferrante, A. Pedrocchi, G. Ferrigno, and F. Molteni. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke 42:1068–1073, 2011.

    Article  PubMed  Google Scholar 

  2. Ashworth, B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner 192:540–542, 1964.

    CAS  PubMed  Google Scholar 

  3. Bergquist, A. J., J. M. Clair, O. Lagerquist, C. S. Mang, Y. Okuma, and D. F. Collins. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur. J. Appl. Physiol. 111:2409–2426, 2011.

    Article  CAS  PubMed  Google Scholar 

  4. Bohannon, R. W., A. W. Andrews, and M. W. Thomas. Walking speed: reference values and correlates for older adults. J. Orthop. Sports Phys. Ther. 24:86–90, 1996.

    Article  CAS  PubMed  Google Scholar 

  5. Burridge, J. H., and D. L. McLellan. Relation between abnormal patterns of muscle activation and response to common peroneal nerve stimulation in hemiplegia. J. Neurol. Neurosurg. Psychiatry 69:353–361, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Burridge, J. H., P. N. Taylor, S. A. Hagan, D. E. Wood, and I. D. Swain. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin. Rehabil. 11:201–210, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Burridge, J. H., D. E. Wood, P. N. Taylor, and D. McLellan. Indices to describe different muscle activation patterns, identified during treadmill walking, in people with spastic drop-foot. Med. Eng. Phys. 23:427–434, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Busner, J., and S. D. Targum. The clinical global impression scale: applying a research tool in clinical practice. Psychiatry 4:28–37, 2007.

    PubMed Central  PubMed  Google Scholar 

  9. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20:37–46, 1960.

    Article  Google Scholar 

  10. Cretuala, A., K. Berveta, and L. Ballaza. Gillette gait index in adults. Gait Posture 32:307–310, 2010.

    Article  Google Scholar 

  11. Davis, R. B., S. Ounpuu, D. Tyburski, and G. R. Gage. A gait analysis data-collection and reduction technique. Hum. Mov. Sci. 10:575–587, 1991.

    Article  Google Scholar 

  12. Eng, J. J., A. S. Dawson, and K. Chu. Submaximal exercise in individuals with stroke: test-retest reliability and concurrent validity with VO2max. Arch. Phys. Med. Rehabil. 85:113–118, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Flansbjer, U., A. M. Holmback, D. Downham, C. Patten, and J. Lexell. Rehabilitation og gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 37:75–82, 2005.

    Article  PubMed  Google Scholar 

  14. Fleiss, J. L. Measuring nominal scale agreement among many raters. Psychol. Bull. 76:378–382, 1971.

    Article  Google Scholar 

  15. Fulk, G., and J. Echternach. Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. J. Neurol. Phys. Ther. 32:8–13, 2008.

    Article  PubMed  Google Scholar 

  16. Gandolla, M., S. Ferrante, F. Molteni, G. Guanziroli, T. Frattini, A. Marteganin, G. Ferrigno, K. Friston, A. Pedrocchi, and N. S. Ward. Re-thinking the role of motor cortex: context-sensitive motor outputs? Neuroimage 91:366–374, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Geyh, S., A. Cieza, J. Schouten, H. Dickson, P. Frommelt, Z. Omar, N. Kostanjsek, H. Ring, and G. Stucki. ICF score sets for stroke. J. Rehabil. Med. 44:135–141, 2004.

    Article  PubMed  Google Scholar 

  18. Kesar, T. M., S. A. Binder-Macleod, G. E. Hicks, and D. S. Reisman. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 33:314–317, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kottink, A. I., H. J. Hermens, A. V. Nene, M. J. Tenniglo, C. G. Groothuis-Oudshoorn, and M. J. Ijzerman. Therapeutic effect of an implantable peroneal nerve stimulator in subjects with chronic stroke and footdrop: a randomized controlled trial. Phys. Ther. 88:437–448, 2008.

    Article  PubMed  Google Scholar 

  20. Landis, J. R., and G. G. Koch. The measurement of observer agreement for categorical data. Biometrics 33:159–174, 1977.

    Article  CAS  PubMed  Google Scholar 

  21. Liberson, W. T., H. J. Holmquest, D. Scot, and M. Dow. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42:101–105, 1961.

    CAS  PubMed  Google Scholar 

  22. Loslever, P., E. M. Laassel, and J. C. Angue. Combined statistical study of joint angles and ground reaction forces using component and multiple correspondence analysis. IEEE Trans. Biomed. Eng. 41:1160–1167, 1994.

    Article  CAS  PubMed  Google Scholar 

  23. Medical Research Council/Guarantors of Brain. Aids to the Examination of the Peripheral Nervous System. London: Baillière Tindall, 1986.

    Google Scholar 

  24. Merletti, R., A. Andina, M. Galante, and I. Furlan. Clinical experience of electronic peroneal stimulators in 50 hemiparetic patients. Scand. J. Rehabil. Med. 11:111–121, 1979.

    CAS  PubMed  Google Scholar 

  25. Rossini, P. M., C. Calautti, F. Pauri, and J. C. Baron. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2:493–502, 2003.

    Article  PubMed  Google Scholar 

  26. Rostagno, C., and G. F. Gensini. Six minutes walk test: a simple and useful test to evaluate functional capacity in patients with heart failure. Intern. Emerg. Med. 3:205–212, 2008.

    Article  PubMed  Google Scholar 

  27. Schwartz, M. H., and A. Rozumalski. The Gait Deviation Index: a new comprehensive index of gait pathology. Gait Posture 28:351–357, 2008.

    Article  PubMed  Google Scholar 

  28. Shutte, L. M., U. Narayanan, J. L. Stout, P. Selber, and J. R. Gage. An index for quantifying deviations from normal gait. Gait Posture 11:25–31, 2000.

    Article  Google Scholar 

  29. Sim, J., and C. C. Wright. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys. Ther. 85:257–268, 2005.

    PubMed  Google Scholar 

  30. Taylor, P. N., J. H. Burridge, A. L. Dunkerley, D. E. Wood, J. A. Norton, C. Singleton, and I. D. Swain. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch. Phys. Med. Rehabil. 80:1577–1583, 1999.

    Article  CAS  PubMed  Google Scholar 

  31. Von Schroeder, H. P., R. D. Coutts, P. D. Lyden, E. Billings, and V. L. Nickel. Gait parameters following stroke: a practical assessment. J. Rehabil. Res. Dev. 32:25–31, 1995.

    Google Scholar 

  32. Ward, N. S., M. M. Brown, A. J. Thompson, and R. S. Frackowiak. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126:1430–1448, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was made possible thanks to the patients that agreed to participate to the project.

Conflict of interest

The authors report no declaration of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Gandolla.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 24404 kb)

Supplemental file 2

Carryover effect evaluation software.exe. This executable file contains a custom-made software developed in Matlab environment (MatlabR2010b) that implements the proposed algorithm and allows carryover effect evaluation. Before to run the application verify the MATLAB Compiler Runtime (MCR) is installed and ensure you have installed version 8.3 (R2014a). If the MCR is not installed, or you have a different version, freely download it from the MathWorks Web site by navigating to—http://www.mathworks.com/products/compiler/mcr/index.html (EXE 552 kb)

Supplemental file 3

Readme.pdf. This pdf file contains the basic information and a short guide for the carryover effect evaluation software use (PDF 323 kb)

Supplemental file 4

Reference values Gandolla et al.xls. This excel file contains the reference value used in the paper for the outcome measures described (XLSX 8 kb)

Supplemental file 5

Template_reference.xls. Template for reference values file preparation (XLSX 8 kb)

Supplemental file 6

Template_patients.xls. Template for patients values file preparation (XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandolla, M., Molteni, F., Ward, N.S. et al. Validation of a Quantitative Single-Subject Based Evaluation for Rehabilitation-Induced Improvement Assessment. Ann Biomed Eng 43, 2686–2698 (2015). https://doi.org/10.1007/s10439-015-1317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1317-4

Keywords

Navigation