Skip to main content
Log in

An MR-Conditional High-Torque Pneumatic Stepper Motor for MRI-Guided and Robot-Assisted Intervention

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 22 August 2017

This article has been updated

Abstract

Magnetic resonance imaging allows for visualizing detailed pathological and morphological changes of soft tissue. MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the Magnetic resonance imaging (MRI). This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800 mN m output torque is achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a 3T Siemens MRI scanner (MAGNETOM Skyra, Siemens Medical Solutions, Erlangen, Germany) and a 3T GE MRI scanner (GE SignaHDx, GE Healthcare, Milwaukee, WI, USA). The image artifact and the signal-to-noise ratio (SNR) were evaluated for study of its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images. No observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the pneumatic motor capability for later incorporation with motorized devices used under MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Change history

  • 22 August 2017

    An erratum to this article has been published.

References

  1. ASTM. F2119 Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants. http://www.astm.org/Standards/F2119.htm, 2013. Accessed 28 June 2013.

  2. Bergeles, C., P. Vartholomeos, L. Qin, and P. E. Dupont. Closed-loop commutation control of an MRI-powered robot actuator. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 698–703.

  3. Bhavikatti, S., and K. Rajashekarappa. Engineering Mechanics. New Delhi: New Age International, 1994.

    Google Scholar 

  4. Briggs, R. W., I. Dy-Liacco, M. P. Malcolm, H. Lee, K. K. Peck, K. S. Gopinath, et al. A pneumatic vibrotactile stimulation device for fMRI. Magn. Reson. Med. 51:640–643, 2004.

    Article  PubMed  Google Scholar 

  5. Cai, M., K. Kawashima, and T. Kagawa. Power assessment of flowing compressed air. J. Fluids Eng. 128:402–405, 2006.

    Article  Google Scholar 

  6. Chen, Y., J. Ge, K.-W. Kwok, K. R. Nilsson, M. Fok, and T. T. Zion. MRI-conditional catheter sensor for contact force and temperature monitoring during cardiac electrophysiological procedures. J. Cardiovasc. Magn. Reson. 16:P150, 2014.

    Article  PubMed Central  Google Scholar 

  7. Chen, Y., C. D. Mershon, and Z. T. H. Tse. A 10-mm MR-conditional unidirectional pneumatic stepper motor. In: IEEE/ASME Transactions on Mechatronics, Vol. 13, 2014, pp. 1–7.

  8. Chinzei, K., R. Kikinis, and F. A. Jolesz, MR compatibility of mechatronic devices: design criteria. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, Miccai’99, Vol. 1679, Jan 1999, pp. 1020–1030.

  9. Fischer, G. S., I. Iordachita, C. Csoma, J. Tokuda, S. P. DiMaio, C. M. Tempany, et al. MRI-compatible pneumatic robot for transperineal prostate needle placement. In: IEEE/ASME Transactions on Mechatronics, Vol. 13, 2008, pp. 295–305.

  10. Gassert, R., A. Yamamoto, D. Chapuis, L. Dovat, H. Bleuler, and E. Burdet. Actuation methods for applications in MR environments. Concepts Magn. Reson. Part B 29B:191–209, 2006.

    Article  Google Scholar 

  11. Ge, Y., L. Chen, F. Sun, and C. Wu. Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid. Int. J. Therm. Sci. 44:506–511, 2005.

    Article  CAS  Google Scholar 

  12. Hall, W. A., and C. L. Truwit. Intraoperative MR-guided neurosurgery. J. Magn. Reson. Imaging 27:368–375, 2008.

    Article  PubMed  Google Scholar 

  13. Hetts, S., M. Saeed, A. Martin, L. Evans, A. Bernhardt, V. Malba, et al. Endovascular catheter for magnetic navigation under MR imaging guidance: evaluation of safety in vivo at 1.5 T. Am. J. Neuroradiol. 34:2083–2091, 2013.

    Article  CAS  PubMed  Google Scholar 

  14. Hogg, R. V., and J. Ledolter. Engineering Statistics, Vol. 358. New York: MacMillan, 1987.

    Google Scholar 

  15. Johnson, V. E. Revised standards for statistical evidence. Proc. Natl. Acad. Sci. 110:19313–19317, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwok, K.-W., Y. Chen, T. C. Chau, W. Luk, K. R. Nilsson, E. J. Schmidt, et al. MRI-based visual and haptic catheter feedback: simulating a novel system’s contribution to efficient and safe MRI-guided cardiac electrophysiology procedures. J. Cardiovasc. Magn. Reson. 16:O50, 2014.

    Article  PubMed Central  Google Scholar 

  17. Kwok, K.-W., K. H. Tsoi, V. Vitiello, J. Clark, G. C. Chow, W. Luk, et al. Dimensionality reduction in controlling articulated snake robot for endoscopy under dynamic active constraints. In: IEEE Transactions on Robotics, Vol. 29, 2013, pp. 15–31.

  18. Liberman, L., N. Bracero, E. Morris, C. Thornton, and D. D. Dershaw. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. AJR Am. J. Roentgenol. 185:183–193, 2005.

    Article  PubMed  Google Scholar 

  19. Maolin, C. and T. Kagawa, Energy consumption assessment of pneumatic actuating systems including compressor. In: Proceeding of International Conference on Compressors and their Systems, 2001, pp. 381–390.

  20. Masamune, K., E. Kobayashi, Y. Masutani, M. Suzuki, T. Dohi, H. Iseki, et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. Comput. Aided Surg. 1:242–248, 1995.

    Article  CAS  Google Scholar 

  21. McRobbie, D. W., E. A. Moore, M. J. Graves, and M. R. Prince. MRI from Picture to Proton. Cambridge: Cambridge University Press, 2006.

    Book  Google Scholar 

  22. Ozsoysal, O. A. Heat loss as a percentage of fuel’s energy in air standard Otto and Diesel cycles. Energy Convers. Manag. 47:1051–1062, 2006.

    Article  Google Scholar 

  23. Qin, L., E. J. Schmidt, Z. T. H. Tse, J. Santos, W. S. Hoge, C. Tempany-Afdhal, et al. Prospective motion correction using tracking coils. Magn. Reson. Med. 69:749–759, 2013.

    Article  PubMed  Google Scholar 

  24. Richer, E., and Y. Hurmuzlu. A high performance pneumatic force actuator system: part I—nonlinear mathematical model. J. Dyn. Syst. Meas. Contr. 122:416–425, 2000.

    Article  Google Scholar 

  25. Robinson, J. An appraisal of piped medical gas systems. Br. J. Hosp. Med. 28:160, 1982.

    CAS  PubMed  Google Scholar 

  26. Sajima, H., H. Kamiuchi, K. Kuwana, T. Dohi, and K. Masamune. MR-safe pneumatic rotation stepping actuator. J. Robot. Mechatron. 24:820–827, 2012.

    Article  Google Scholar 

  27. Stoianovici, D. Multi-imager compatible actuation principles in surgical robotics. Int. J. Med. Robot. Comput. Assist. Surg. 1:86–100, 2005.

    Article  CAS  Google Scholar 

  28. Stoianovici, D., A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, A new type of motor: pneumatic step motor. In: IEEE/ASME Transactions on Mechatronics, Vol. 12, Feb 2007, pp. 98–106.

  29. Tse, Z. T. H., H. Elhawary, M. Rea, B. Davies, I. Young, and M. Lamperth, Haptic needle unit for MR-guided biopsy and its control. In: IEEE/ASME Transactions on Mechatronics, Vol. 17, Feb 2012, pp. 183–187.

  30. Tse, Z. T. H., H. Elhawary, A. Zivanovic, M. Rea, M. Paley, G. Bydder, et al. A 3-DOF MR-compatible device for magic angle related in vivo experiments. In: IEEE-ASME Transactions on Mechatronics, Vol. 13, Jun 2008, pp. 316–324.

  31. Vartholomeos, P., C. Bergeles, L. Qin, and P. E. Dupont. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int. J. Robot. Res. 32:1536–1552, 2013.

    Article  Google Scholar 

  32. Wang, Y., H. Su, K. Harrington, and G. Fischer, Sliding mode control of piezoelectric valve regulated pneumatic actuator for MRI-compatible robotic intervention. In: ASME Dynamic Systems and Control Conference-DSCC, 2010.

  33. Yu, N., R. Gassert, and R. Riener. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging. Int. J. Comput. Assist. Radiol. Surg. 6:473–488, 2011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) U41-RR019703, Dr. Richard J. Schlesinger Grant, and The Croucher Foundation Fellowship.

Conflict of interest

None to declare.

Financial disclosure

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Wai Kwok.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Yue Chen and Ka-Wai Kwok: joint first author.

An erratum to this article is available at https://doi.org/10.1007/s10439-017-1890-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Kwok, KW. & Tse, Z.T.H. An MR-Conditional High-Torque Pneumatic Stepper Motor for MRI-Guided and Robot-Assisted Intervention. Ann Biomed Eng 42, 1823–1833 (2014). https://doi.org/10.1007/s10439-014-1049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1049-x

Keywords

Navigation